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EDITORS' PREFACE

The increasing specialisation in biological inquiry has
made it impossible for any one author to deal adequately
with current advances in knowledge. It has become a
matter of considerable difficulty for a research student to
gain a correct idea of the present state of knowledge of a
subject in which he himself is interested. To meet this
situation the text-book is being supplemented by the
monograph.

The aim of the present series is to provide authoritative
accounts of what has been done in some of the diverse



branches of biological investigation, and at the same time
to give to those who have contributed notably to the
development of a particular field of inquiry an opportunity
of presenting the results of their researches, scattered
throughout the scientific journals, in a more extended
form, showing their relation to what has already been
done and to problems that remain to be solved.

The present generation is witnessing " a return to practice
of older days when animal physiology [p. vi] was not yet
divorced from morphology." Conspicuous progress is now
being seen in the field of general physiology, of
experimental biology, and in the application of biological
principles to economic problems. In this series, therefore,
it is intended that biological research, both pure and
applied, shall be represented.

F.A.E. Crew, Edinburgh
D. Ward Cutler, Rothamsted [p. vii]

AUTHOR'S PREFACE

For several years the author has been working in
somewhat intimate co-operation with a number of
biological research departments; the present book is in
every sense the product of this circumstance. Daily
contact with the statistical problems which present
themselves to the laboratory worker has stimulated the
purely mathematical researches upon which are based
the methods here presented. Little experience is sufficient



to show that the traditional machinery of statistical
processes is wholly unsuited to the needs of practical
research. Not only does it take a cannon to shoot a
sparrow, but it misses the sparrow! The elaborate
mechanism built on the theory of infinitely large samples
is not accurate enough for simple laboratory data. Only by
systematically tackling small sample problems on their
merits does it seem possible to apply accurate tests to
practical data. Such at least has been the aim of this
book.

I owe more than I can say to Mr. W. S. Gosset, Mr. E.
Somerfield, and Miss W. A. Mackenzie, who [p. viii] have
read the proofs and made many valuable suggestions.
Many small but none the less troublesome errors have
been removed; I shall be grateful to readers who will notify
me of any further errors and ambiguities they may detect.

ROTHAMSTED EXPERIMENTAL STATION,
February 1925
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INTRODUCTORY

1. The Scope of Statistics

The science of statistics is essentially a branch of Applied
Mathematics and may be regarded as mathematics
applied to observational data. As in other mathematical
studies the same formula is equally relevant to widely
different groups of subject matter. Consequently the unity
of the different applications has usually been overlooked,
the more naturally because the development of the



underlying mathematical theory has been much
neglected. We shall therefore consider the subject matter
of statistics under three different aspects, and then show
in more mathematical language that the same types of
problems arise in every case. Statistics may be regarded
as (i.) the study of populations, (ii.) as the study of
variation, (iii.) as the study of methods of the reduction
of data.

The original meaning of the word "statistics" [p. 2]
suggests that it was the study of populations of human
beings living in political union. The methods developed,
however, have nothing to do with the political unity of the
group, and are not confined to populations of men or of
social insects. Indeed, since no observational record can
completely specify a human being, the populations
studied are to some extent abstractions. If we have
records of the stature of 10,000 recruits, it is rather the
population of statures than the population of recruits that
is open to study. Nevertheless, in a real sense, statistics is
the study of populations, or aggregates of individuals,
rather than of individuals. Scientific theories which involve
the properties of large aggregates of individuals, and not
necessarily the properties of the individuals themselves,
such as the Kinetic Theory of Gases, the Theory of
Natural Selection, or the chemical Theory of Mass Action,
are essentially statistical arguments; and are liable to
misinterpretation as soon as the statistical nature of the
argument is lost sight of. Statistical. methods are essential



to social studies, and it is principally by the aid of such
methods that these studies may be raised to the rank of
sciences. This particular dependence of social studies
upon statistical methods has led to the painful
misapprehension that statistics is to be regarded as a
branch of economics, whereas in truth economists have
much to learn from their scientific contemporaries, not
only in general scientific method, but in particular in
statistical practice.

The idea of a population is to be applied not only [p. 3] to
living, or even material, individuals. If an observation, such
as a simple measurement, be repeated a number of times,
the aggregate of the results is a population of
measurements. Such populations are the particular field
of study of the Theory of Errors, one of the oldest and
most fruitful lines of statistical investigation. Just as a
single observation may be regarded as an individual, and
its repetition as generating a population, so the entire
result of an extensive experiment may be regarded as but
one of a population of such experiments. The salutary
habit of repeating important experiments, or of carrying
out original observations in replicate, shows a tacit
appreciation of the fact that the object of our study is not
the individual result, but the population of possibilities of
which we do our best to make our experiments
representative. The calculation of means and probable
errors shows a deliberate attempt to find out something
about that population.



The conception of statistics as the study of variation is the
natural outcome of viewing the subject as the study of
populations; for a population of individuals in all respects
identical is completely described by a description of any
one individual, together with the number in the group, The
populations which are the object of statistical study
always display variation in one or more respects. To speak
of statistics as the study of variation also serves to
emphasise the contrast between the aims of modern
statisticians and those of their predecessors. For, until
comparatively recent times, the vast majority [p. 4] of
workers in this field appear to have had no other aim than
to ascertain aggregate, or average, values.

The variation itself was not an object of study, but was
recognised rather as a troublesome circumstance which
detracted from the value of the average. The error curve
of the mean of a normal sample has been familiar for a
century, but that of the standard deviation has scarcely
been securely established for a decade. Yet, from the
modern point of view, the study of the causes of variation
of any variable phenomenon, from the yield of wheat to
the intellect of man, should be begun by the examination
and measurement of the variation which presents itself.

The study of variation leads immediately to the concept of
a frequency distribution. Frequency distributions are of
various kinds, according as the number of classes in
which the population is distributed is finite or infinite, and
also according as the intervals which separate the classes



are finite or infinitesimal. In the simplest possible case, in
which there are only two classes, such as male and female
births, the distribution is simply specified by the
proportion in which these occur, as for example by the
statement that 51 per cent of the births are of males and
49 per cent of females. In other cases the variation may
be discontinuous, but the number of classes indefinite, as
with the number of children born to different married
couples; the frequency distribution would then show the
frequency with which 0, 1, 2 ... children were recorded, the
number of classes being sufficient to include the largest
family in the record. [p. 5] The variable quantity, such as
the number of children, is called the variate, and the
frequency distribution specifies how frequently the variate
takes each of its possible values. In the third group of
cases, the variate, such as human stature, may take any
intermediate value within its range of variation; the variate
is then said to vary continuously, and the frequency
distribution may be expressed by stating, as a
mathematical function of the variate, either (i.) the
proportion of the population for which the variate is less
than any given value, or (ii.) by the mathematical device of
differentiating this function, the (infinitesimal) proportion
of the population for which the variate falls within any
infinitesimal element of its range.

The idea of a frequency distribution is applicable either to
populations which are finite in number, or to infinite
populations, but it is more usefully and more simply



applied to the latter. A finite population can only be
divided in certain limited ratios, and cannot in any case
exhibit continuous variation. Moreover, in most cases only
an infinite population can exhibit accurately, and in their
true proportion, the whole of the possibilities arising from
the causes actually at work, and which we wish to study.
The actual observations can only be a sample of such
possibilities. With an infinite population the frequency
distribution specifies the fractions of the populations
assigned to the several classes; we may have (i.) a finite
number of fractions adding up to unity as in the Mendelian
frequency distributions, or (ii.) an infinite series of finite
fractions adding up to unity, or (iii.) a mathematical [p. 6]
function expressing the fraction of the total in each of the
infinitesimal elements in which the range of the variate
may be divided. The last possibility may be represented
by a frequency curve; the values of the variate are set out
along a horizontal axis, the fraction of the total population,
within any limits of the variate, being represented by the
area of the curve standing on the corresponding length of
the axis. It should be noted that the familiar concept of the
frequency curve is only applicable to infinite populations
with continuous variates.

The study of variation has led not merely to measurement
of the amount of variation present, but to the study of the
qualitative problems of the type, or form, of the variation.
Especially important is the study of the simultaneous
variation of two or more variates. This study, arising



principally out of the work of Galton and Pearson, is
generally known in English under the name of
Correlation, but by some continental writers as
Covariation.

The third aspect under which we shall regard the scope of
statistics is introduced by the practical need to reduce the
bulk of any given body of data. Any investigator who has
carried out methodical and extensive observations will
probably be familiar with the oppressive necessity of
reducing his results to a more convenient bulk. No human
mind is capable of grasping in its entirety the meaning of
any considerable quantity of numerical data. We want to
be able to express all the relevant information contained in
the mass by means of comparatively few numerical [p. 7]
values. This is a purely practical need which the science
of statistics is able to some extent to meet. In some cases
at any rate it is possible to give the whole of the relevant
information by means of one or a few values. In all cases,
perhaps, it is possible to reduce to a simple numerical
form the main issues which the investigator has in view, in
so far as the data are competent to throw light on such
issues. The number of independent facts supplied by the
data is usually far greater than the number of facts
sought, and in consequence much of the information
supplied by any body of actual data is irrelevant. It is the
object of the statistical processes employed in the
reduction of data to exclude this irrelevant information,
and to isolate the whole of the relevant information



contained in the data.

2. General Method, Calculation of Statistics

The discrimination between the irrelevant and the relevant
information is performed as follows. Even in the simplest
cases the values (or sets of values) before us are
interpreted as a random sample of a hypothetical infinite
population of such values as might have arisen in the
same circumstances. The distribution of this population
will be capable of some kind of mathematical
specification, involving a certain number, usually few, of
parameters, or "constants" entering into the
mathematical formula. These parameters are the
characters of the population. If we could know the exact
specification of the population, we should know all (and
more than) any sample from [p. 8] the population could
tell us. We cannot in fact know the specification exactly,
but we can make estimates of the unknown parameters,
which will be more or less inexact. These estimates, which
are termed statistics, are of course calculated from the
observations. If we can find a mathematical form for the
population which adequately represents the data, and
then calculate from the data the best possible estimates
of the required parameters, then it would seem that there
is little, or nothing, more that the data can tell us; we shall
have extracted from it all the available relevant
information.

The value of such estimates as we can make is



enormously increased if we can calculate the magnitude
and nature of the errors to which they are subject. If we
can rely upon the specification adopted, this presents the
purely mathematical problem of deducing from the nature
of the population what will be the behaviour of each of the
possible statistics which can be calculated. This type of
problem, with which until recent years comparatively little
progress had been made, is the basis of the tests of
significance by which we can examine whether or not the
data are in harmony with any suggested hypothesis. In
particular, it is necessary to test the adequacy of the
hypothetical specification of the population upon which
the method of reduction was based.

The problems which arise in the reduction of data may
thus conveniently be divided into three types:

(i.) Problems of Specification, which arise in the choice
of the mathematical form of the population. [p. 9]

(ii.) Problems of Estimation, which involve the choice of
method of calculating, from our sample, statistics fit to
estimate the unknown parameters of the population.

(iii.) Problems of Distribution, which include the
mathematical deduction of the exact nature of the
distribution in random samples of our estimates of the
parameters, and of other statistics designed to test the
validity of our specification (tests of Goodness of Fit).

The statistical examination of a body of data is thus



logically similar to the general alternation of inductive and
deductive methods throughout the sciences. A
hypothesis is conceived and defined with necessary
exactitude; its consequences are deduced by a deductive
argument; these consequences are compared with the
available observations; if these are completely in accord
with the deductions, the hypothesis may stand at any rate
until fresh observations are available.

The deduction of inferences respecting samples, from
assumptions respecting the populations from which they
are drawn, shows us the position in Statistics of the
Theory of Probability. For a given population we may
calculate the probability with which any given sample will
occur, and if we can solve the purely mathematical
problem presented, we can calculate the probability of
occurrence of any given statistic calculated from such a
sample. The Problems of Distribution may in fact be
regarded as applications and extensions of the theory of
probability. [p. 10] Three of the distributions with which
we shall be concerned, Bernoulli's binomial distribution,
Laplace's normal distribution, and Poisson's series, were
developed by writers on probability. For many years,
extending over a century and a half, attempts were made
to extend the domain of the idea of probability to the
deduction of inferences respecting populations from
assumptions (or observations) respecting samples. Such
inferences are usually distinguished under the heading of
Inverse Probability, and have at times gained wide



acceptance. This is not the place to enter into the
subtleties of a prolonged controversy; it will be sufficient
in this general outline of the scope of Statistical Science
to express my personal conviction, which I have sustained
elsewhere, that the theory of inverse probability is
founded upon an error, and must be wholly rejected.
Inferences respecting populations, from which known
samples have been drawn, cannot be expressed in terms
of probability, except in the trivial case when the
population is itself a sample of a super-population the
specification of which is known with accuracy.

This is not to say that we cannot draw, from knowledge of
a sample, inferences respecting the population from
which the sample was drawn, but that the mathematical
concept of probability is inadequate to express our mental
confidence or diffidence in making such inferences, and
that the mathematical quantity which appears to be
appropriate for measuring our order of preference among
different possible populations does not in fact obey the
laws of probability. [p. 11] To distinguish it from probability,
I have used the term "Likelihood" to designate this
quantity; since both the words "likelihood" and
"probability" are loosely used in common speech to cover
both kinds of relationship.

3. The Qualifications of Satisfactory Statistics

The solutions of problems of distribution (which may be
regarded as purely deductive problems in the theory of



probability) not only enable us to make critical tests of the
significance of statistical results, and of the adequacy of
the hypothetical distribution upon which our methods of
numerical deduction are based, but afford some guidance
in the choice of appropriate statistics for purposes of
estimation. Such statistics may be divided into classes
according to the behaviour of their distributions in large
samples.

If we calculate a statistic, such, for example, as the mean,
from a very large sample, we are accustomed to ascribe
to it great accuracy; and indeed it would usually, but not
always, be true, that if a number of such statistics could
be obtained and compared, the discrepancies between
them would grow less and less, as the samples from
which they are drawn are made larger and larger. In fact,
as the samples are made larger without limit, the statistic
will usually tend to some fixed value characteristic of the
population, and, therefore, expressible in terms of the
parameters of the population. If, therefore, such a statistic
is to be used to estimate these parameters, there is only
one parametric function to which it can properly be
equated. [p. 12] If it be equated to some other parametric
function, we shall be using a statistic which even from an
infinite sample does not give the correct value; it tends
indeed to a fixed value, but to a value which is erroneous
from the point of view with which it was used. Such
statistics are termed Inconsistent Statistics; except when
the error is extremely minute, as in the use of Sheppard's



corrections, inconsistent statistics should be regarded as
outside the pale of decent usage.

Consistent statistics, on the other hand, all tend more
and more nearly to give the correct values, as the sample
is more and more increased; at any rate, if they tend to
any fixed value it is not to an incorrect one. In the simplest
cases, with which we shall be concerned, they not only
tend to give the correct value, but the errors, for samples
of a given size, tend to be distributed in a well-known
distribution (of which more in Chap. III.) known as the.
Normal Law of Frequency of Error, or more simply as the
normal distribution. The liability to error may, in such
cases, be expressed by calculating the mean value of the
squares of these errors, a value which is known as the
variance; and in the class of cases with which we are
concerned, the variance falls off with increasing samples,
in inverse proportion to the number in the sample.

Now, for the purpose of estimating any parameter, it is
usually possible to invent any number of statistics which
shall be consistent in the sense defined above, and each
of which has in large samples a variance falling off
inversely with the size of the sample. But [p. 13] for large
samples of a fixed size, the variance of these different
statistics will generally be different. Consequently a
special importance belongs to a smaller group of
statistics, the error distributions of which tend to the
normal distribution, as the sample is increased, with the
least possible variance. We may thus separate off from



the general body of consistent statistics a group of
especial value, and these are known as efficient
statistics.

The reason for this term may be made apparent by an
example. If from a large sample of (say) 1000
observations we calculate an efficient statistic, A, and a
second consistent statistic, B, having twice the variance
of A, then B will be a valid estimate of the required
parameter, but one definitely inferior to A in its accuracy.
Using the statistic B, a sample of 2000 values would be
required to obtain as good an estimate as is obtained by
using the statistic A from a sample of 1000 values. We
may say, in this sense, that the statistic B makes use of 50
per cent of the relevant information available in the
observations; or, briefly, that its efficiency is 50 per cent.
The term "efficient" in its absolute sense is reserved for
statistics the efficiency of which is 100 per cent.

Statistics having efficiency less than 100 per cent may be
legitimately used for many purposes. It is conceivable, for
example, that it might in some cases be laborious to
increase the number of observations than to apply a more
elaborate method of calculation the results. It may often
happen that an inefficient statistic is accurate enough to
answer the particular [p. 14] questions at issue. There is,
however, one limitation to the legitimate use of inefficient
statistics which should be noted in advance. If we are to
make accurate tests of goodness of fit, the methods of
fitting employed must not introduce errors of fitting



comparable to the errors of random sampling; when this
requirement is investigated, it appears that when tests of
goodness of fit are required, the statistics employed in
fitting must be not only consistent, but must be of 100 per
cent efficiency. This is a very serious limitation to the use
of inefficient statistics, since. in the examination of any
body of data it is desirable to be able at any time to test
the validity of one or more of the provisional assumptions
which have been made.

Numerous examples of the calculation of statistics will be
given in the following chapters, and in these illustrations
of method efficient statistics have been chosen. The
discovery of efficient statistics in new types of problem
may require some mathematical investigation. The
investigations of the author have led him to the conclusion
that an efficient statistic can in all cases be found by the
Method of Maximum Likelihood; that is, by choosing
statistics so that the estimated population should be that
for which the likelihood is greatest. In view of the
mathematical difficulty of some of the problems which
arise it is also useful to know that approximations to the
maximum likelihood solution are also in most cases
efficient statistics. A simple example of the application of
the method of maximum likelihood to a genetical problem
is given at the end of this chapter. [p. 15]

For practical purposes it is not generally necessary to
press refinement of methods further than the stipulation
that the statistics used should be efficient. With large



samples it may be shown that all efficient statistics tend
to equivalence, so that little inconvenience arises from
diversity of practice. There is, however, one class of
statistics, including some of the most frequently recurring
examples, which is of theoretical interest for possessing
the remarkable property that, even in small samples, a
statistic of this class alone includes the whole of the
relevant information which the observations contain. Such
statistics are distinguished by the term sufficient, and, in
the use of small samples, sufficient statistics, when they
exist, are definitely superior to other efficient statistics.
Examples of sufficient statistics are the arithmetic mean
of samples from the normal distribution, or from the
Poisson Series; it is the fact of providing sufficient
statistics for these two important types of distribution
which gives to the arithmetic mean its theoretical
importance. The method of maximum likelihood leads to
these sufficient statistics where they exist.

While diversity of practice within the limits of efficient
statistics will not with large samples lead to
inconsistencies, it is, of course, of importance in all cases
to distinguish clearly the parameter of the population, of
which it is desired to estimate the value, from the actual
statistic employed as an estimate of its value; and to
inform the reader by which of the considerable variety of
processes which exist for the purpose the estimate was
actually obtained. [p. 16]

4. Scope of this Book



The prime object of this book is to put into the hands of
research workers, and especially of biologists, the means
of applying statistical tests accurately to numerical data
accumulated in their own laboratories or available in the
literature. Such tests are the result of solutions of
problems of distribution, most of which are but recent
additions to our knowledge and have so far only appeared
in specialised mathematical papers. The mathematical
complexity of these problems has made it seem
undesirable to do more than (i.) to indicate the kind of
problem in question, (ii.) to give numerical -illustrations by
which the whole process may be checked, (iii.) to provide
numerical tables by means of which the tests may be
made without the evaluation of complicated algebraical
expressions .

It would have been impossible to give methods suitable
for the great variety of kinds of tests which are required
but for the unforeseen circumstances that each
mathematical solution appears again and again in
questions which at first sight appeared to be quite
distinct. For example, Pearson's solution in 1900 of the
distribution of c2 is in reality equivalent to the distribution
of the variance as estimated from normal samples, of
which the solution was not given until 1908, and then
quite tentatively, and without complete mathematical
proof, by "Student." The same distribution was found by
the author for the index of dispersion derived from small
samples from a Poisson [p. 17] Series. What is even more



remarkable is that, though Pearson's paper of 1900
contained a serious error, which vitiated most of the tests
of goodness of fit made by this method until 1921, yet the
correction of this error leaves the form of the distribution
unchanged, and only requires that some few units should
be deducted from one of the variables with which the
table of c2 is entered.

It is equally fortunate that the distribution of t, first
established by "Student" in 1908, in his study of the
probable error of the mean, should be applicable, not only
to the case there treated, but to the more complex, but
even more frequently needed problem of the comparison
of two mean values. It further provides an exact solution
of the sampling errors of the enormously wide class of
statistics known as regression coefficients.

In studying the exact theoretical distributions in a number
of other problems, such as those presented by intraclass
correlations, the goodness of fit of regression lines, the
correlation ratio, and the multiple correlation coefficient,
the author has been led repeatedly to a third distribution,
which may be called the distribution of z, and which is
intimately related to, and 'indeed a natural extension of,
the distributions found by Pearson and "Student." It has
thus been possible to classify the necessary distributions,
covering a very great variety of cases, under these three
main groups; and, what is equally important, to make
some provision for the need of numerical values by means
of a few tables only. [p. 18]



The book has been arranged so that the student may
make acquaintance with these three main distributions in
a logical order, and proceeding from more simple to more
complex cases. Methods developed in later chapters are
frequently seen to be generalisations of simpler methods
developed previously. Studying the work methodically as
a connected treatise, the student will, it is hoped, not miss
the fundamental unity of treatment under which such very
varied material has been brought together; and will
prepare himself to deal competently and with exactitude
with the many analogous problems, which cannot be
individually exemplified. On the other hand, it is
recognised that many will wish to use the book for
laboratory reference, and not as a connected course of
study. This use would seem desirable only if the reader
will be at the pains to work through, in all numerical detail,
one or more of the appropriate examples, so as to assure
himself, not only that his data are appropriate for a parallel
treatment, but that he has obtained some critical grasp of
the meaning to be attached to the processes and results.

It is necessary to anticipate one criticism, namely, that in
an elementary book, without mathematical proofs, and
designed for readers without special mathematical
training, so much has been included which from the
teacher's point of view is advanced; and indeed much that
has not previously appeared in print. By way of apology
the author would like to put forward the following
considerations.



(1) For non - mathematical readers, numerical [p. 19]
tables are in any case necessary; accurate tables are no
more difficult to use, though more laborious to calculate,
than inaccurate tables embodying the current
approximations.

(2) The process of calculating a probable error from one
of the established formulæ gives no real insight into the
random sampling distribution, and can only supply a test
of significance by the aid of a table of deviations of the
normal curve, and on the assumption that the distribution
is in fact very nearly normal. Whether this procedure
should, or should not, be used must be decided, not by
the mathematical attainments of the investigator, but by
discovering whether it will or will not give a sufficiently
accurate answer. The fact that such a process has been
used successfully by eminent mathematicians in analysing
very extensive and important material does not imply that
it is sufficiently accurate for the laboratory worker anxious
to draw correct conclusions from a small group of
perhaps preliminary observations.

(3) The exact distributions, with the use of which this
book is chiefly concerned, have been in fact developed in
response to the practical problems arising in biological
and agricultural research; this is true not only of the
author's own contribution to the subject, but from the
beginning of the critical examination of statistical
distributions in "Student's " paper of 1908.



The greater part of the book is occupied by numerical
examples; and these perhaps could with advantage have
been increased in number. In choosing them it has
appeared to the author a hopeless task [p. 20] to attempt
to exemplify the great variety of subject matter to which
these processes may be usefully applied. There are no
examples from astronomical statistics, in which important
work has been done in recent years, few from social
studies, and the biological applications are scattered
unsystematically. The examples have rather been chosen
each to exemplify a particular process, and seldom on
account of the importance of the data used, or even of
similar examinations of analogous data. By a study of the
processes exemplified, the student should be able to
ascertain to what questions, in his own material, such
processes are able to give a definite answer; and, equally
important, what further observations would be necessary
to settle other outstanding questions. In conformity with
the purpose of the examples the reader should remember
that they do not pretend to be critical examinations of
general scientific questions, which would require the
examination of much more extended data, and of other
evidence, but are solely concerned with the evidence of
the particular batch of data presented.

5. Mathematical Tables

The tables of distributions supplied at the ends of several
chapters form a part essential to the use of the book.



TABLES I. AND II.-The importance of the normal
distribution has been recognised at least from the time of
Laplace. (The formula has even been traced back to a
little-known work by De Moivre of 1733) Numerous tables
have given in one form or another the relation between the
deviation, and the probability of a greater deviation.
Important sources for these values are

J. Burgess (1895), Trans. Roy. Soc. Edin., XXXIX. pp.
257-321;

J. W. L. Glaisher (1871), Phil. Mag., Series IV. Vol. XLII.
p. 436.

The very various forms in which this relation has been
tabulated adds considerably to the labour of practical
applications. The form which we have adopted for this,
and for the other tables, has been used for the normal
distribution by

F. Galton and W. F. Sheppard (1907), Biometrika,V. p.
405;

T. L. Kelley, Statistical Method, pp. 373-385;

both of which are valuable tables, on a more extensive
scale than Table I. In Table II. we have given the normal
deviations corresponding to very high odds. It should be
remembered that even slight departures from the normal
distribution will render these very small probabilities
relatively very inaccurate, and that we seldom can be



certain, in any particular case, that these high odds will be
accurate. The table illustrates the general fact that the
significance in the normal distribution of deviations
exceeding four times the standard deviation is extremely
pronounced.

TABLE III.; table of c2. -- Tables of the value of P for
different values of c2 and n', were given by

K. Pearson (1900), Phil. Mag., Series V. Vol. L. p. 175;
[p. 22]

W. P. Elderton (1902), Biometrika, I. pp. 155-163; the
same relationship in a much modified form underlies

K. Pearson (I922), Tables of the incomplete G-
function.

Table III. gives the values of c2 for different values of P and
n, in a form designed for rapid laboratory use, and with a
view to covering in sufficient detail the range of values
actually occurring in practice. For higher values of n the
test is supplemented by an easily calculated approximate
test.

TABLE IV.; table of t. -- Tables of the same distribution as
that of t have been given by

"Student " (1908), Biometrika, VI. p. 19;

"Student" (1917), Biometrika, XI. pp. 414-417.



"Student" gives the value of (1-½P) for different values of
z (=t/[sqrt]n in our notation) and n (=n+1 in our notation).
As in the case of the table of c2, the very much extended
application of this distribution has led to a reinterpretation
of the meaning of n to cover a wider class of cases.
Extended tables giving the values of P for different values
of t are in preparation by the same author. For the
purposes of the present book we require the values of t
corresponding to given values of P and n.

TABLE V. A gives the values of the correlation coefficient
for different levels of significance, according to the extent
of the sample upon which the value is based. From this
table the reader may see at a glance whether or not any
correlation obtained may be regarded as significant, for
samples up to 100 pairs of observations. [p. 23]

TABLE V. B gives the values of the well-known
mathematical function, the hyperbolic tangent, which we
have introduced in the calculation of sampling errors of
the correlation coefficient. The function is simply related
to the logarithmic and exponential functions, and may be
found quite easily by such a convenient table of natural
logarithms as is given in

J. T. Bottomley, Four-figure Mathematical Tables,

while the hyperbolic tangent and its inverse appear in

W. Hall, Four-figure Tables and Constants.



A table of natural logarithms is in other ways a necessary
supplement in using this book, as in other laboratory
calculations. Tables of the inverse hyperbolic tangent for
correlational work have been previously given by

R. A. Fisher (1921), Metron. Vol. I. No.4, pp. 26-
27.

TABLE VI.; table of z. -- Tests involving the use of z,
including as special cases the use of c2 and of t, are so
widespread, that it is probable that a more extended table
of this function will be necessary. The exploration of this
function is of such recent date, and the construction of a
table of triple entry is such a laborious task, that all that
can be offered at present is the small table corresponding
to the important region, P= .05 It is probable, indeed, that
if supplemented by a similar table for P=.01, all ordinary
requirements would be met, although to avoid the labour
of interpolation much larger tables for these two values
would be needed.

At present I can only beg the reader's indulgence [p. 24]
for the inadequacy of the present table, pleading in my
defence that, on ground so recently won as is that
occupied by the greater part of this book, the full facilities
and conveniences which many workers can gradually
accumulate cannot yet be expected.

6. The following example exhibits in a relatively simple
case the application of the method of maximum likelihood



to discover a statistic capable of giving an efficient
estimate of an unknown parameter. Since this procedure
belongs rather to the advanced mathematical treatment
of theoretical statistics, it may be noted that to master it is
not a necessary preliminary to understanding the practical
methods developed in the rest of the book. Students,
however, who wish to apply the fundamental principles
mentioned in this introductory chapter to new types of
data, may perhaps be glad of an example of the general
procedure.

Ex. 1. The derivation of an efficient statistic by means of
the method of maximum likelihood. -- Animals or plants
heterozygous for two linked factors showing complete
dominance are self fertilised ; if all four types are equally
viable, how should the extent of linkage be estimated from
the numerical proportions of the four types of offspring?

If the allelomorphs of the first factor are A and a, and of
the second factor B and b, the four types of gametes AB,
Ab, aB and ab will be produced by the males and females
in proportions depending on the linkage of the factors,
subject to the condition that the allelomorphs of each
factor occur equally frequently. [p. 25] The proportions
will the two sexes; suppose the proportions to be



then, if the two dominant genes are derived from the
same parent, q, q' will be the cross-over ratios, if from
different parents the cross-over ratios will be p, p'.

By taking all possible combinations of the gametes, it
appears that the four types of offspring will occur in the
proportions

The effect of linkage is wholly expressed by the quantity
pp', and from a sample of observations giving observed
frequencies a, b, g, d, we require to obtain an estimate of
the value of pp'. The rule for applying the method of
maximum likelihood is to multiply each observed
frequency by the logarithm of the corresponding
theoretical frequency, and to find the value of the
unknown quantity which makes the total of these
products a maximum. Writing x for pp',

a log (2+x) + (b+g) log (1-x) + d log x

is to be made a maximum; by a well-known application of
the differential calculus, this requires that



which leads to the quadratic equation for x,

(a+b+g+d)x2 - (a-2b-2g-d)x - 2d = 0, [p. 26]

the positive solution of which is the most likely value for
pp', as judged from the data.

For two factors in Primula the following numbers were
observed (de Winton and Bateson's data):

a=396, b=99, g=104, d=70;

the quadratic for x is

669x2 + 80x - 140 = 0,

of which the positive solution is x = .4016. To obtain the
cross-over values in the two sexes separately, using self-
fertilisation only, it would of course be necessary to repeat
the experiment with heterozygotes of the opposite
composition.

The numbers expected, on the supposition that pp' =
4016, are :



Classics in the History of
Psychology

An internet resource developed by
Christopher D. Green

York University, Toronto, Ontario
ISSN 1492-3173

(Return to index)

STATISTICAL METHODS FOR RESEARCH WORKERS

By Ronald A. Fisher (1925)

Posted March 2000

II

DIAGRAMS

7. The preliminary examination of most data is facilitated
by the use of diagrams. Diagrams prove nothing, but bring
outstanding features readily to the eye; they are therefore
no substitute for such critical tests as may be applied to
the data, but are valuable in suggesting such tests, and in
explaining the conclusions founded upon them.

8. Time Diagrams, Growth Rate and Relative Growth
Rate



The type of diagram in most frequent use consists in
plotting the values of a variable, such as the weight of an
animal or of a sample of plants against its age, or the size
of a population at successive intervals of time. Distinction
should be drawn between those cases in which the same
group of animals, as in a feeding experiment, is weighed
at successive intervals of time, and the cases, more
characteristic of plant physiology, in which the same
individuals cannot be used twice, but a parallel sample is
taken at each age. The same. distinction occurs in counts
of micro-organisms [p. 28] between cases in which
counts are made from samples of the same culture, or
from samples of parallel cultures. If it is of importance to
obtain the general form of the growth curve, the second
method has the advantage that any deviation from the
expected curve may be confirmed from independent
evidence at the next measurement, whereas using the
same material no such independent confirmation is
obtainable. On the other hand, if interest centres on the
growth rate, there is an advantage in using the same
material, for only so are actual increases in weight
measurable. Both aspects of the difficulty can be got over
only by replicating the observations; by carrying out
measurements on a number of animals under parallel
treatment it is possible to test, from the individual weights,
though not from the means, whether their growth curve
corresponds with an assigned theoretical course of
development, or differs significantly from it or from a
series differently tested. Equally, if a number of plants



from each sample are weighed individually, growth -rates
may be obtained with known probable errors, and so may
be used for critical comparisons. Care should of course be
taken that each is strictly a random sample.

Fig. 1 represents the growth of a baby weighed to the
nearest ounce at weekly intervals from birth. Table 1
indicates the calculation from these data of the absolute
growth rate in ounces per day and the relative growth rate
per day. The absolute growth rates, representing the
average actual rates at which substance is added during
each period, are found by [p. 29] [figure] [p. 30]
subtracting from each value that previously recorded, and
dividing by the length of the period. The relative growth
rates measure the rate of increase not only per unit of
time, but per unit of weight already attained; using the
mathematical fact, that

[p. 31]

it is seen that the true average value of the relative growth
rate for any period is obtained from the natural logarithms
of the successive weights, just as the actual rates of
increase are from the weights themselves. Such relative
rates of increase are conveniently multiplied by 100, and
therefore expressed as the percentage rate of increase
per day. If these percentage rates of increase had been
calculated on the principle of simple interest, by dividing



the actual increase by the weight at the beginning of the
period, somewhat higher values would have been
obtained; the reason for this is that the actual weight of
the baby at any time during each period is usually
somewhat higher than its weight at the beginning. The
error introduced by the simple interest formula becomes
exceedingly great when the percentage increases
between successive weighings are large.

Fig. 1A shows the course of the increase in absolute
weight ; the average slope of such a diagram shows the
absolute rate of increase. In this diagram the points fall
approximately on a straight line, showing that the absolute
rate of increase was nearly constant at about 1.66 oz. per
diem. Fig. 1B shows the course of the increase in the
natural logarithm of the weight; the slope at any point
shows the relative rate of increase, which, apart from the
first week, falls off perceptibly with increasing age. The
features of such curves are best brought out if the scales
of the two axes are so chosen that the line makes
approximately equal angles with the two axes; with nearly
vertical, or nearly horizontal lines, changes in the slope
are not so readily perceived. [p. 32]

A rapid and convenient way of displaying the line of
increase of the logarithm is afforded by the use of graph
paper in which the horizontal rulings are spaced on a
logarithmic scale, with the actual values indicated in the
margin. The horizontal scale can then be adjusted to give
the line an appropriate slope. This method avoids the use



of a logarithm table, which, however, will still be required if
the values of the relative rate of increase are needed.

In making a rough examination of the agreement of the
observations with any law of increase, it is desirable so to
manipulate the variables that the law to be tested will be
represented by a straight line. Thus Fig. 1A is suitable for a
rough test of the law that the absolute rate of increase is
constant ; if it were suggested that the relative rate of
increase were constant, Fig. 1B would show clearly that
this was not so. With other hypothetical growth curves
other transformations may be used; for example, in the
so-called "autocatalytic" curve the relative growth rate
falls off in proportion to the actual weight attained at any
time. If, therefore, the relative growth rate be plotted
against the actual weight, the points should fall on a
straight line if the "autocatalytic" curve fits the facts. For
this purpose it is convenient to plot against each observed
weight the mean of the two adjacent relative growth rates.
To do this for the above data for the growth of an infant
may be left as an exercise to the student; twelve points
will be available for weights 114 to 254 ounces. The
relative growth rates, even after averaging adjacent pairs,
will be very irregular, [p. 33] so that no clear indications
will be found from these data. If a straight line is found to
fit the data, it should be produced to meet the horizontal
axis to find the weight at which growth ceases.

9. Correlation Diagrams



Although most investigators make free use of diagrams in
which an uncontrolled variable is plotted against the time,
or against some controlled factor such as concentration
of solution, or temperature, much more use might be
made of correlation diagrams in which one uncontrolled
factor is plotted against another. When this is done as a
dot diagram, a number of dots are obtained each
representing a single experiment, or pair of observations,
and it is usually clear from such a diagram whether or not
any close connexion exists between the variables. When
the observations are few a dot diagram will often tell us
whether or not it is worth while to accumulate
observations of the same sort; the range and extent of our
experience is visible at a &lance ; and associations may be
revealed which are worth while following up.

If the observations are so numerous that the dots cannot
be clearly distinguished, it is best to divide up the diagram
into squares, recording the frequency in each; this semi-
diagrammatic record is a correlation table.

Fig. 2 shows in a dot diagram the yields obtained from an
experimental plot of wheat (dunged plot, Broadbalk field,
Rothamsted) in years with different [p. 34] total rainfall.
The plot was under uniform treatment during the whole
period 1854-1888; the 35 pairs of observations, indicated
by 35 dots, show well the association of high yield with
low rainfall. Even when few observations are available a
dot diagram may suggest associations hitherto
unsuspected, or what is equally important, the absence of



associations which would have been confidently
predicted. Their value lies in giving a simple conspectus of
the experience hitherto gathered, and in bringing to the
mind suggestions [p. 35] which may be susceptible of
more exact statistical examination.

Instead of making a dot diagram the device is sometimes
adopted of arranging the values of one variate in order of
magnitude, and plotting the values of a second variate in
the same order. If the line so obtained shows any
perceptible slope, or general trend, the variates are taken
to be associated. Fig. 3 represents the line obtained far
rainfall, when the years are arranged in order of wheat
yield. Such diagrams are usually far less informative than
the diagram, and often conceal features of importance
brought out by the-former. In addition the dot diagram
possesses the advantage that it is easily used [p. 36] as a
correlation table if the number of dots is small, and easily
transformed into one if the number of dots is large.

In the correlation table the values of both variates are
divided into classes, and the class intervals should be
equal for all values of the same variate. Thus we might
divide the value for the yield of wheat throughout at
intervals of one bushel, and the values of the rainfall at
intervals of 1 inch. The diagram is thus divided into
squares, and the number of observations falling into each
square is counted and recorded. The correlation table is
useful for three distinct purposes. It affords a valuable
visual representation of the whole of the observations,



which with a little experience is as easy to comprehend as
a dot diagram; it serves as a compact record of extensive
data, which, as far as the two variates are concerned, is
complete. With more than two variates correlation tables
may be given for every pair. This will not indeed enable
the reader to reconstruct the original data in its entirety,
but it is a fortunate fact that for the great majority of
statistical purposes, a set of such twofold distributions
provides complete information. Original data involving
more than two variates is most conveniently recorded for
reference on cards, each case being given a separate card
with the several variates entered in corresponding
positions upon them. The publication of such complete
data presents difficulties, but it is not yet sufficiently
realised how much of the essential information can be
presented in a compact form by means of correlation
tables. The third feature of value about [p. 37] the
correlation table is that the data so presented form a
convenient basis for the immediate application of
methods of statistical reduction. The most important
statistics which the data provide can be most readily
calculated from the correlation table. An example of a
correlation table is shown in Table 31, p. 140.·

10. Frequency Diagrams

When a large number of individuals are measured in
respect of physical dimensions, weight, colour, density,
etc., it is possible to describe with some accuracy the
population of which our experience may be regarded as a



sample. By this means it may be possible to distinguish it
from other populations differing in their genetic origin, or
in environmental circumstances. Thus local races may be
very different as populations, although individuals may
overlap in all characters; or, under experimental
conditions, the aggregate may show environmental
effects, on size, death-rate, etc., which cannot be
detected in the individual. A visible representation of a
large number of measurements of any one feature is
afforded by a frequency diagram. The feature measured is
used as abscissa, or measurement along the horizontal
axis, and as ordinates are set off vertically the
frequencies, corresponding to each range.

Fig. 4 is a frequency diagram illustrating the distribution in
stature of 1375 women (Pearson and Lee's data
modified), The whole sample of women is divided up into
successive height ranges of one inch. [p. 38] Equal areas
on the diagram represent equal frequency; if the data be
such that the ranges into which the individuals are
subdivided are not equal, care should be taken to make
the areas correspond to the observed frequencies, so that
the area standing upon any interval of the base line shall
represent the actual frequency observed in that interval.

The class containing the greatest number of observations
is technically known as the modal class. In Fig. 4 the
modal class indicated is the class whose central value is
63 inches. When, as is very frequently the case, the
variate varies continuously, so that all intermediate values



are possible, the choice of the grouping interval and limits
is arbitrary and will make a perceptible difference to the
appearance of the diagram. Usually, however, the possible
limits of grouping will be governed by the smallest units in
which the measurements are recorded. If, for example,
measurements of height were made to the nearest [p. 39]
quarter of an inch, so that all values between 66-7/8
inches and 67-1/8 Were recorded as 67 inches, all values
between 67-1/8 and 67-3/8 were recorded as 67-1/4,
then we have no choice but to take as our unit of grouping
1, 2, 3, 4, etc., quarters of an inch, and the limits of each
group must fall on some odd number of eighths of an
inch. For purposes of calculation the smaller grouping
units are more accurate, but for diagrammatic purposes
coarser grouping is often preferable. Fig. 4 indicates a unit
of grouping suitable in relation to the total range for a
large sample ; with smaller samples a coarser grouping is
usually necessary in order that sufficient observations
may fall in each class.

In all cases where the variation is continuous the
frequency diagram should be in the form of a histogram,
rectangular areas standing on each grouping interval
showing the frequency of observations in that interval.
The alternative practice of indicating the frequency by a
single ordinate raised from the centre of the interval is
sometimes preferred, as giving to the diagram a form
more closely resembling a continuous curve. The
advantage is illusory, for not only is the form of the curve



thus indicated somewhat misleading, but the utmost care
should always be taken to distinguish the infinitely large
hypothetical population from which our sample of
observations is drawn, from the actual sample of
observations which we possess; the conception of a
continuous frequency curve is applicable only to the
former, and in illustrating the latter no attempt should be
made to slur over this distinction. [p. 40]

This consideration should in no way prevent a frequency
curve fitted to the data, from being super-imposed upon
the histogram (as in Fig. 4); the contrast between the
histogram representing the sample, and the continuous
curve representing an estimate of the form of the
hypothetical population, is well brought out in such
diagrams, and the eye is aided in detecting any serious
discrepancy between the observations and the
hypothesis. No eye observation of such diagrams,
however experienced, is really capable of discriminating
whether or not the observations differ from expectation
by more than we should expect from the circumstances of
random sampling. Accurate methods of making such tests
will be developed in later chapters.

With discontinuous variation, when, for example, the
variate is confined to whole numbers, the above reason
for insisting on the histogram form has little weight, for
there are, strictly speaking, no ranges of variation within
each class. On the other hand, there is no question of a
frequency curve in such cases. Representation of such



data by means of a histogram is usual and not
inconvenient; it is especially appropriate if we regard the
discontinuous variation as due to an underlying
continuous variate, which can, however, express itself only
to the nearest whole number.

It is, of course, possible to treat the values of the
frequency like any other variable, by plotting the value of
its logarithm, or its actual value on logarithmic paper,
when it is desired to illustrate the agreement [p. 41] of the
observations with any particular law of frequency. Fig. 5
shows in this way. the number of flowers (buttercups)
having 5 to 10 petals (Pearson's data), plotted upon
logarithmic paper, to facilitate comparison with the
hypothesis that the frequency, for petals above five, falls
off in geometric progression. Such illustrations are not,
properly speaking, frequency diagrams, although the
frequency is one of the variables [p. 42] employed,
because they do not adhere to the convention that equal
frequencies are represented by equal areas.

A useful form, similar to the above, is used to compare the
death-rates, throughout life, of different populations. The
logarithm of the number of survivors at any age is plotted
against the age attained. Since the death-rate is the rate
of decrease of the logarithm of the number of survivors,
equal gradients on such curves represent equal death-
rates. They therefore serve well to show the increase of
death-rate with increasing age, and to compare
populations with different death-rates. Such diagrams are



less sensitive to small fluctuations than would be the
corresponding frequency diagrams showing the
distribution of the population according to age at death;
they are therefore appropriate when such small
fluctuations are due principally to errors of random
sampling, which in the more sensitive type of diagram
might obscure the larger features of the comparison. It
should always be remembered that the choice of the
appropriate methods of statistical treatment is quite
independent of the choice of methods of diagrammatic
representation.
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III

DISTRIBUTIONS

11. The idea of an infinite population distributed in a
frequency distribution in respect of one or more
characters is fundamental to all statistical work. From a
limited experience, for example, of individuals of a
species, or of the weather of a locality, we may obtain
some idea of the infinite hypothetical population from
which our sample is drawn, and so of the probable nature
of future samples to which our conclusions are to be
applied. If a second sample belies this expectation we



infer that it is, in the language of statistics, drawn from a
different population; that the treatment to which the
second sample of organisms had been exposed did in fact
make a material difference, or that the climate (or the
methods of measuring it) had materially altered. Critical
tests of this kind may be called tests of significance, and
when such tests are available we may discover whether a
second sample is or is not significantly different from the
first.

A statistic is a value calculated from an observed sample
with a view to characterising the population [p. 44] from
which it is drawn. For example, the mean of a number of
observations x1, x2, . . . xn, is given by the equation

where S stands for summation over the whole sample,
and n for the number of observations. Such statistics are
of course variable from sample to sample, and the idea of
a frequency distribution is applied with especial value to
the variation of such statistics. If we know exactly how the
original population was distributed it is theoretically
possible, though often a matter of great mathematical
difficulty, to calculate how any statistic derived from a
sample of given size will be distributed. The utility of any
particular statistic, and the nature of its distribution, both
depend on the original distribution, and appropriate and
exact methods have been worked out for only a few



cases. The application of these cases is greatly extended
by the fact that the distribution of many statistics tends to
the normal form as the size of the sample is increased.
For this reason it is customary to assume that such
statistics are normally distributed, and to limit
consideration of their variability to calculations of the
standard error or probable error.

In the present chapter we shall give some account of
three principal distributions -- (i.) the normal distribution,
(ii.) the Poisson Series, (iii.) the binomial distribution. It is
important to have a general knowledge of these three
distributions, the mathematical formulæ by which they are
represented, the experimental [p. 45] conditions upon
which they occur, and the statistical methods of
recognising their occurrence. On the latter topic we shall
be led to some extent to anticipate methods developed
more systematically in Chaps. IV. and V.

12. The Normal Distribution

A variate is said to be normally distributed when it takes
all values from -[infinity], to +[infinity] , with frequencies
given by a definite mathematical law, namely, that the
logarithm of the frequency at any distance x from the
centre of the distribution is less than the logarithm of the
frequency at the centre by a quantity proportional to x2.
The distribution is therefore symmetrical, with the
greatest frequency at the centre; although the variation is
unlimited, the frequency falls off to exceedingly small



values at any considerable distance from the centre, since
a large negative logarithm corresponds to a very small
number. Fig. 6B represents a normal curve of distribution.
The frequency [p. 46] in any infinitesimal range dx may be
written as

where x-m is the distance of the observation, x, from the
centre of the distribution, m; and s, called the standard
deviation, measures in the same units the extent to which
the individual values are scattered. Geometrically s is the
distance, on either side of the centre, of the steepest
points, or points of inflexion of the curve (Fig. 4).

In practical applications we do not so often want to know
the frequency at any distance from the centre as the total
frequency beyond that distance; this is represented by the
area of the tail of the curve cut off at any point. Tables of
this total frequency, or probability integral, have been
constructed from which, for any value of

we can find what fraction of the total population has a
larger deviation; or, in other words, what is the probability
that a value so distributed, chosen at random, shall



exceed a given deviation. Tables I. and II. have been
constructed to show the deviations corresponding to
different values of this probability. The rapidity with which
the probability falls off as the deviation increases is well
shown in these tables. A deviation exceeding the standard
deviation occurs about once in three trials. Twice the
standard deviation is exceeded only about once in 22
trials, thrice the standard deviation only once in 370 trials,
while Table II. shows that to exceed the standard deviation
sixfold would need [p. 47] nearly a thousand million trials.
The value for which P =·.05, or 1 in 20, is 1.96 or nearly 2 ;
it is convenient to take this point as a limit in judging
whether a deviation is to be considered significant or not.
Deviations exceeding twice the standard deviation are
thus formally regarded as significant. Using this criterion,
we should be led to follow up a negative result only once
in 22 trials, even if the statistics are the only guide
available. Small effects would still escape notice if the
data were insufficiently numerous to bring them out, hut
no lowering of the standard of significance would meet
this difficulty.

Some little confusion is sometimes introduced by the fact
that in some cases we wish to know the probability that
the deviation, known to be positive, shall exceed an
observed value, whereas in other cases the probability
required is that a deviation, which is equally frequently
positive and negative, shall exceed an observed value; the
latter probability is always half the former. For example,



Table I. shows that the normal deviate falls outside the
range [plus or minus]1.598193 in 10 per cent of cases,
and consequently that it exceeds +1.598193 in 5 per cent
of cases.

The value of the deviation beyond which half the
observations lie is called the quartile distance, and bears
to the standard deviation the ratio .67449.·It is therefore a
common practice to calculate the standard error and then,
multiplying it by this factor, to obtain the probable error.
The probable error is thus about two-thirds of the
standard error, and as a test of significance a deviation of
three times [p. 48] the probable error is effectively
equivalent to one of twice the standard error. The
common use of the probable error is its only
recommendation ; when any critical test is required the
deviation must be expressed in terms of the standard
error in using the probability integral table.

13. Fitting the Normal Distribution

From a sample of n individuals of a normal population the
mean and standard deviation of the population may be
estimated by means of two easily calculated statistics.
The best estimate of m is x where

while for the best estimate of s, we calculate s from



these two statistics are calculated from the first two
moments (see Appendix, p. 74) of the sample, and are
specially related to the normal distribution, in that they
summarise the whole of the information which the sample
provides as to the distribution from which it was drawn,
provided the latter was normal. Fitting by moments has
also been widely applied to skew (asymmetrical) curves,
and others which are not normal; but such curves have
not the peculiar properties which make the first two
moments especially appropriate, and where the curves
differ widely from the normal form the above two statistics
may be of little or no use.

Ex. 2. Fitting a normal distribution to a large [p. 49]
sample. -- In calculating the statistics from a large sample
it is not necessary to calculate individually the squares of
the deviations from the mean of each measurement. The
measurements are grouped together in equal intervals of
the variate, and the whole of the calculation may be
carried out rapidly as shown in Table 2, where the
distribution of the stature of 1164 men is analysed.

The first column shows the central height in inches of
each group, followed by the corresponding frequencies. A
central group (68.5") is chosen as "working mean." To
form the next column the frequencies are multiplied by 1,
2, 3, etc., according to their distance from the working
mean; this process being repeated to form the fourth



column, which is summed from top to bottom in a single
operation; in the third column, however, the upper portion,
representing negative deviations, is summed separately,
and subtracted from the sum of the lower portion. The
difference, in this case positive, shows that the whole
sample of 1164 individuals has in all 167 inches more than
if every individual were 68.5" in height. This balance
divided by 1164 gives the amount by which the mean of
the sample exceeds 68.5". The mean of the sample is
therefore 68.6435". The sum of the fourth column is also
divided by 1164, and gives an uncorrected estimate of the
variance; two corrections are then applied -- one is for the
fact that the working mean differs from the true mean,
and consists in subtracting the square of the difference ;
the second, which is Sheppard's correction for grouping,
[p. 50] [table] [p. 51] allows for the fact that the process
of grouping tends somewhat to exaggerate the variance,
since in each group the values with deviations smaller
than the central value will generally be more numerous
than the values with deviations larger than the central
value. Working in units of grouping, this correction is
easily applied by subtracting a constant quantity 1/12
(=.0833) from the variance. From the variance so
corrected the standard deviation is obtained by taking the
square root. This process may be carried through as an
exercise with the distribution of female statures given in
the same table (p. 103).

Any interval may be used as a unit of grouping; and the



whole calculation is carried through in such units, the final
results being transformed into other units if required, just
as we might wish to transform the mean and standard
deviation from inches to centimetres by multiplying by the
appropriate factor. It is advantageous that the units of
grouping should be exact multiples of the units of
measurement ; so that if the above sample had been
measured to tenths of an inch, we might usefully have
grouped them at intervals of 0.6" or 0.7".

Regarded as estimates of the mean and standard
deviation of a normal population of which the above is
regarded as a sample, the values found are affected by
errors of random sampling; that is, we should not expect a
second sample to give us exactly the same values. The
values for different (large) samples of the same size
would, however, be distributed very accurately in normal
distributions, so the accuracy of [p. 52] any one such
estimate may be satisfactorily expressed by its standard
error. These standard errors may be calculated from the
standard deviation of the population, and in treating large
samples we take our estimate of this standard deviation
as the basis of the calculation. The formulæ for the
standard errors of random sampling of estimates of the
mean and standard deviation of a large normal sample are
(as given in Appendix, p. 75)



and their numerical values have been appended to the
quantities to which they refer. From these values it is seen
that our sample shows significant aberration from any
population whose mean lay outside the limits
68.48"-68.80", and it is therefore likely that the mean of
the population from which it was drawn lay between these
limits; similarly it is likely that its standard deviation lay
between 2.59" and 2·81".

It may be asked, Is nothing lost by grouping? Grouping in
effect replaces the actual data by fictitious data placed
arbitrarily at the central values of the groups; evidently a
very coarse grouping might be very misleading. It has
been shown that as regards obtaining estimates of the
parameters of a normal population, the loss of information
caused by grouping is less than 1 per cent, provided the
group interval does not exceed one quarter of the
standard deviation ; the grouping of the above sample in
whole inches is thus somewhat too coarse; the loss in the
estimation of the [p. 53] standard deviation is 2.28 per
cent, or about 27 observations out of 1164; the loss in the
estimation of the mean is half as great. With suitable
group intervals, however, little is lost by grouping, and
much labour is saved.

Another way of regarding the loss of information involved
in grouping is to consider how near the values obtained
for the mean and standard deviation will be to the values
obtained without grouping. From this point of view we
may calculate a standard error of grouping, not to be



confused with the standard error of random sampling
which measures the deviation of the sample values from
the population value. In grouping units, the standard error
due to grouping of both the mean and the standard
deviation is

or in this case 0085". For sufficiently fine grouping this
should not exceed one-tenth of the standard error of
random sampling.

In the above analysis of a large sample the estimate of the
variance employed was

which differs from the formula given previously (p. 48) in
that we have divided by n instead of by (n-1). In large
samples the difference between these formulæ is small,
and that using n may claim a theoretical advantage if we
wish for an estimate to be used in conjunction with the
estimate of the mean from the [p. 54] same sample, as in
fitting a frequency curve to the data; otherwise it is best to
use (n-1). In small samples the difference is still small
compared to the probable error, but becomes important if
a variance is estimated by averaging estimates from a
number of small samples. Thus if a series of experiments
are carried out each with six parallels and we have reason



to believe that the variation is in all cases due to the
operation of analogous causes, we may take the average
of such quantities as

to obtain an unbiassed estimate of the variance, whereas
we should under-estimate it were we to divide by 6.

14. Test of Departure from Normality

It is sometimes necessary to test whether an observed
sample does or does not depart significantly from
normality. For this purpose the third, and sometimes the
fourth moment, is calculated; from each of these it is
possible to calculate a quantity, g, which is zero for a
normal distribution, and is distributed normally about zero
for large samples; the standard error being calculable
from the size of the sample.

The quantity g1, which is calculated from the third
moment, is essentially a measure of asymmetry; it is equal
to [plus or minus][sqrt]b1, of Pearson's notation; g2(=b2-
3), calculated from the fourth moment, measures a
symmetrical type of departure from the normal form, [p.
55] by which the apex and the two tails of the curve are
increased at the expense of the intermediate portion, or,
when g2, is negative, the top and tails are depleted and
the shoulders filled out, making a relatively flat-topped
curve. (See Fig. 6, p. 45·)



Ex. 3. Use of higher moments to test normality. --
Departures from normal form, unless very strongly
marked, can only be detected in large samples; we give an
example (Table 3) of the calculation for 65 values of the
yearly rainfall at Rothamsted; the process of calculation is
similar to that of finding the mean and standard deviation,
but it is carried two stages further, in the calculation of the
3rd and 4th moments. The formulæ by which the two
corrections are applied to the moments are gathered in an
appendix, p. 74· For the moments we obtain

whence are calculated

For samples from a normal distribution the standard errors
of g1 and g2 are [sqrt]6/n and [sqrt]24/n, of which the
numerical values are given. It will be seen that g1, exceeds
its standard error, but g2, is quite insignificant; since g1, is
positive it appears that there may be some asymmetry of
the distribution in the sense that moderately dry and very
wet years are respectively more frequent than moderately
wet and very dry years. [p. 56]

15. Discontinuous Distributions

Frequently a variable is not able to take all possible values,
but is confined to a particular series of values, such as the
whole numbers. This is obvious when the variable is a



frequency, obtained by counting, such as the number of
cells on a square of a hæmocytometer, [p. 57] or the
number of colonies on a plate of culture medium. The
normal distribution is the most important of the
continuous distributions; but among discontinuous
distributions the Poisson Series is of the first importance.
If a number can take the values 0, 1, 2, . . ., x, . . ., and the
frequency with which the values occur are given by the
series

(where x! stands for "factorial x" =x(x-1)(x-2) ... 1), then
the number is distributed in the Poisson Series. Whereas
the normal curve has two unknown parameters, m and s,
the Poisson Series has only one. This value may be
estimated from a series of observations, by taking their
mean, the mean being a statistic as appropriate to the
Poisson Series as it is to the normal curve. It may be
shown theoretically that if the probability of an event is
exceedingly small, but a sufficiently large number of
independent cases are taken to obtain a number of
occurrences, then this number will be distributed in the
Poisson Series. For example, the chance of a man being
killed by horse-kick on any one day is exceedingly small,
but if an army corps of men are exposed to this risk for a
year, a certain number of them will often be killed in this
way. The following data (Bortkewitch's data) were



obtained from the records of ten army corps for twenty
years: [p. 58]

The average, m, is .61, and using this value the numbers
calculated agree excellently with those observed.

The importance of the Poisson Series in biological
research was first brought out in connexion with the
accuracy of counting with a hæmocytometer. It was
shown that when the technique of the counting process
was effectively perfect, the number of cells on each
square should be theoretically distributed in a Poisson
Series; it was further shown that this distribution was, in
favourable circumstances, actually realised in practice.
Thus the table on page 59 (Student's data) shows the
distribution of yeast cells in the 400 squares into which
one square millimetre was divided.

The total number of cells counted is 1872, and the mean
number is therefore 4.68. The expected frequencies
calculated from this mean agree well with those observed.
The methods of resting the agreement are explained in



Chapter IV.

When a number is the sum of several components each of
which is independently distributed in a Poisson [p. 59]
Series, then the total number is also so distributed. Thus
the total count of 1872 cells may be regarded as a single
sample of a series, for which m is not far from 1872. For
such large values of m the distribution of numbers
approximates closely to the normal form, in such a way
that the variance is equal to m; we may therefore attach to
the number counted, 1872, the standard error [plus of
minus][sqrt]1872 = [plus or minus]43.26, to represent the
standard error of random sampling of such a count. The
density of cells in the original suspension is therefore
estimated with a standard error of 2.31 per cent. If, for
instance, a second sample differed by 7 per cent, the
technique of sampling would be suspect. [p. 60]

16. Small Samples of a Poisson Series

Exactly the same principles as govern the accuracy of a
hæmocytometer count would also govern a count of
bacterial or fungal colonies in estimating the numbers of
those organisms by the dilution method, if it could be
assumed that the technique of dilution afforded a
perfectly random distribution of organisms, and that these
could develop on the plate without mutual interference.
Agreement of the observations with the Poisson
distribution thus affords in the dilution method of counting
a test of the suitability of the technique and medium



similar to the test afforded of the technique of
hæmocytometer counts. The great practical difference
between these cases is that from the hæmocytometer we
can obtain a record of a large number of squares with only
a few organisms on each, whereas in a bacterial count we
may have only 5 parallel plates, bearing perhaps 200
colonies apiece. From a single sample of 5 it would be
impossible to demonstrate that the distribution followed
the Poisson Series; however, when a large number of such
samples have been obtained under comparable
conditions, it is possible to utilise the fact that for all
Poisson Series the variance is numerically equal to the
mean.

For each set of parallel plates with x1, x2, . . ., xn, colonies
respectively, taking the mean x[bar], an index of
dispersion may be calculated by the formula

 [p. 61]

It has been shown that for true samples of a Poisson
Series, χ2 calculated in this way will be distributed in a
known manner; Table III. (p. 98) shows the principal values
of χ2 for this distribution; entering the table take n equal to
one less than the number of parallel plates. For small
samples the permissible range of variation of χ2 is wide;
thus for five plates with n=4, χ2 will be less than 1.064 in
10 per cent of cases, while the highest 10 per cent will



exceed 7.779; a single sample of 5 thus gives us little
information; but if we have 50 or 100 such samples, we
are in a position to verify with accuracy if the expected
distribution is obtained.

Ex. 4· Test of agreement with a Poisson Series of a
number of small samples. -- From 100 counts of bacteria
in sugar refinery products the following values were
obtained (Table 6); there being 6 plates in each case, the
values of χ2 were taken from the χ2 table for n =5.

It is evident that the observed series differs strongly from
expectation; there is an enormous excess in the first class,
and in the high values over 15; the relatively few values
from 2 to 15 are not far from the expected proportions, as
is shown in the last column by taking 43 per cent of the
expected values. It is possible then that even in this case
nearly half of the samples were satisfactory, but about 10
per cent were excessively variable, and in about 45 per
cent of the cases the variability was abnormally
depressed.

It is often desirable to test if the variability is of the right
magnitude when we have not accumulated [p. 62] a large
number of counts, all with the same number of parallel
plates, but where a certain number of counts are available
with various numbers of parallels. In this case we cannot
indeed verify the theoretical distribution with any
exactitude, but can test whether [p. 63] or not the general
level of variability conforms with expectation. The sum of



a number of independent values of χ2 is itself distributed
in the manner shown in the table of χ2, provided we take
for n the number S(n), calculated by adding the several
values of n for the separate experiments. Thus for six sets
of 4 plates each the total value of χ2 was found to be
1385, the corresponding value of n is 6x3=18, and the χ2

table shows that for n=18 the value 13.85 is exceeded in
between 70 and 80 per cent of cases ; it is therefore not
an abnormal value to obtain. In another case the following
values were obtained:

We have therefore to test if χ2=170 is an unreasonably
small or great value for n=176· The χ2 table has not been
calculated beyond n=30, but for higher values we make
use of the fact that the distribution of χ2 becomes nearly
normal. A good approximation is given by assuming that
([sqrt]2χ2 - [sqrt]2n-1 is normally distributed about zero
with unit standard deviation. If this quantity is materially
greater than 2, the value of χ2 is not in accordance with
expectation. In the example before us [p. 64]



The set of 45 counts thus shows variability between
parallel plates, very close to that to be expected
theoretically. The internal evidence thus suggests that the
technique was satisfactory.

17. Presence and Absence of Organisms in Samples

When the conditions of sampling justify the use of the
Poisson Series, the number of samples containing 0, 1, 2,
... organisms is, as we have seen, connected by a
calculable relation with the mean number of organisms in
the sample. With motile organisms, or in other cases
which do not allow of discrete colony formation, the mean
number of organisms in the sample may be inferred from
the proportion of fertile cultures, provided a single
organism is capable of developing. If m is the mean
number of organisms in the sample, the proportion of
samples containing none, that is the proportion of sterile
samples, is e-m, from which relation we can calculate, as
in the following table, the mean number of organisms
corresponding to 10 per cent, 20 per cent, etc., fertile
samples:



In connexion with the use of the above table it is worth
noting that for a given number of samples [p. 65] tested
the percentage is most accurately determined at 50 per
cent, but for the minimum percentage error in the
estimate of the number of organisms, nearly 60 per cent
or 88 organisms per sample is most accurate. The
Poisson Series also enables us to calculate what
percentage of the fertile cultures obtained have been
derived from a single organism, for the percentage of
impure cultures, i.e. those derived from 2 or more
organisms, can be calculated from the percentage of
cultures which proved to be fertile. If e-m are sterile, me-m

will be pure cultures, and the remainder impure. The
following table gives representative values of the
percentage of cultures which are fertile, and the
percentage of fertile cultures which are impure:

If it is desired that the cultures should be pure with high
probability, a sufficiently low concentration must be used
to render at least nine-tenths of the samples sterile.



18. The Binomial Distribution

The binomial distribution is well known as the first
example of a theoretical distribution to be established. It
was found by Bernoulli, about the beginning of the
eighteenth century, that if the probability of an event
occurring were p and the probability of it not occurring
were q(=1-p), then if a random sample of n trials [p. 66]
were taken, the frequencies with which the event
occurred 0, 1, 2,..., n times were given by the expansion of
the binomial

(q+p)n.

This rule is a particular case of a more general theorem
dealing with cases in which not only a simple alternative is
considered, but in which the event may happen in s ways
with probabilities p1, p2 ..., ps; then it can be shown that
the chance of a random sample of n giving a1, of the first
kind, a2, of the second, ..., as of the last is

which is the general term in the multinomial expansion of

(p1+p2+...+ps)
n.

Ex. 5· Binomial distribution given by dice records. -- In
throwing a true die the chance of scoring more than 4 is
1/3, and if 12 dice are thrown together the number of dice



scoring 5 or 6 should be distributed with frequencies
given by the terms in the expansion of

(2/3 + 1/3)12

If, however, one or more of the dice were not true, but if all
retained the same bias throughout the experiment, the
frequencies should be given approximately by

(q+p)12,

where p is a fraction to be determined from the data. [p.
67] The following frequencies were observed (Weldon's
data) in an experiment of 26,306 throws.



It is apparent that the observations are not compatible
with the assumption that the dice were. unbiassed. With
true dice we should expect more cases than have been
observed of 0, 1, 2, 3, 4, and less cases than have been
observed of 5, 6, ..., 11 dice scoring more than four. The
same conclusion is more clearly brought out in the fifth
column, which shows the values of the measure of
divergence

where m is the expected value and x the difference [p. 68]
between the expected and observed values. The
aggregate of these values is χ2, which measures the
deviation of the whole series from the expected series of
frequencies, and the actual chance in this case of χ2

exceeding 40.75 if the dice had been true is .00003.

The total number of times in which a die showed 5 or 6
was 106,602, out of 315,672 trials, whereas the expected
number with true dice is 105,224; from the former
number, the value of p can be calculated, and proves to
be .337,698,6, and hence the expectations of the fourth
column were obtained. These values are much more close
to the observed series, and indeed fit them satisfactorily,
showing that the conditions of the experiment were really
such as to give a binomial series.

The standard deviation of the binomial series is [sqrt]pqn.



Thus with true dice and 315,672 trials the expected
number of dice scoring more than 4 is 105,224 with
standard error 264.9; the observed number exceeds
expectation by 2378, or 5.20 times its standard error; this
is the most sensitive test of the bias, and it may be
legitimately applied, since for such large samples the
binomial distribution closely approaches the normal. From
the table of the probability integral it appears that a
normal deviation only exceeds 5.2 times its standard error
once in 5 million times.

The reason why this last test gives so much higher odds
than the test for goodness of fit, is that the latter is testing
for discrepancies of any kind, such, for example, as
copying errors would introduce. The actual discrepancy is
almost wholly due to a single item, namely, the value of p,
and when that point [p. 69] is tested separately its
significance is more clearly brought out.

Ex. 6. Comparison of sex ratio in human families with the
binomial distribution. -- Biological data are rarely so
extensive as this experiment with dice; Geissler's data on
the sex ratio in German families will serve as an example.
It is well known that male births are slightly more
numerous than female births, so that if a family of 8 is
regarded as a random sample of eight from the general
population, the number of boys in such families should be
distributed in the binomial

(q+p)8,



where p is the proportion of boys. If, however, families
differ not only by chance, but by a tendency on the part of
some parents to produce males or females, then the
distribution of the number of boys should show an excess
of unequally divided families, and a deficiency of equally
or nearly equally divided families. The data in Table 11
show that there is evidently such an excess of very
unequally divided families.

The observed series differs from expectation markedly in
two respects: one is the excess of unequally divided
families; the other is the irregularity of the central values,
showing an apparent bias in favour of even values. No
biological reason is suggested for the latter discrepancy,
which therefore detracts from the value of the data. The
excess of the extreme types of family may be treated in
more detail by [p. 70] comparing the observed with the
expected variance. The expected variance, npq,
calculated from the data is 1.998,28, while that calculated
from the data is 2.067,42, showing an excess of .06914, or
3.46 per cent. The standard error of the variance is

where N is the number of samples, and m2 and m4, are
the second and fourth moments of the theoretical
distribution, namely,



so that

The approximate values of these two terms are 8 and -1
giving +7, the actual value being 6.98966. Hence the
standard error of the variance is .01141; the discrepancy is
over six times its standard error. [p. 71]

One possible cause of the excessive variation lies in the
occurrence of multiple births, for it is known that children
of the same birth tend to be of the same sex. The multiple
births are not separated in these data, but an idea of the
magnitude of this effect may be obtained from other data
for the German Empire. These show about 12 twin births
per thousand, of which 5/8 are of like sex and 3/8 of
unlike, so that one-quarter of the twin births, 3 per
thousand, may be regarded as "identical" in respect of
sex. Six children per thousand would therefore probably
belong to such "identical" twin births, the additional effect
of triplets, etc., being small. Now with a population of
identical twins it is easy to see that the theoretical
variance is doubled; consequently, to raise the variance by
3.46 per cent we require that 3.46 per cent of the children
should be "identical" twins; this is more than five times
the general average, and although it is probable that the
proportion of twins is higher in families of 8 than in the
general population, we cannot reasonably ascribe more
than a fraction of the excess variance to multiple births.



19. Small Samples of the Binomial Series

With small samples, such as ordinarily occur in
experimental work, agreement with the binomial series
cannot be tested with such precision from a single
sample. It is, however, possible to verify that the variation
is approximately what it should be, by calculating an index
of dispersion similar to that used for the Poisson Series.
[p. 72]

Ex. 7· The accuracy of estimates of infestation. -- The
proportion of barley ears infected with goutfly may be
ascertained by examining 100 ears, and counting the
infected specimens; if this is done repeatedly, the
numbers obtained, if the material is homogeneous, should
be distributed in the binomial

(q+p)100,

where p is the proportion infested, and q the proportion
free from infestation. The following are the data from 10
such observations made on the same plot (J. G. H. Frew's
data):

16, 18, 11, 18, 21, 10, 20, 18, 17, 21. Mean 17.0·

Is the variability of these numbers ascribable to random
sampling; i.e. Is the material apparently homogeneous?
Such data differs from that to which the Poisson Series is
appropriate, in that a fixed total of 100 is in each case
divided into two classes, infected and not infected, so that



in taking the variability of the infected series we are
equally testing the variability of the series of numbers not
infected. The modified form of χ2, the index of dispersion,
appropriate to the binomial is

differing from the form appropriate to the Poisson Series
in containing the divisor q[bar], or in this case, .83.· The
value of χ2 is 9.22, which, as the χ2, table shows, is a
perfectly reasonable value for n=9, one less than the
number of values available. [p. 73]

Such a test of the single sample is, of course, far from
conclusive, since χ2 may vary within wide limits. If,
however, a number of such small samples are available,
though drawn from plots of very different infestation, we
can test, as with the Poisson Series, if the general trend of
variability accords with the binomial distribution. Thus
from 20 such plots the total χ2 is 193.64, while S(n) is 180.
Testing as before (p. 63), we find

The difference being less than one, we conclude that the
variance shows no sign of departure from that of the



binomial distribution. The difference between the method
appropriate for this case, in which the samples are small
(10), but each value is derived from a considerable
number (100) of observations, and that appropriate for
the sex distribution in families of 8, where we had many
families, each of only 8 observations, lies in the omission
of the term

npq(1-6pq)

in calculating the standard error of the variance. When n is
100 this term is very small compared to 2n2p2q2, and in
general the χ2 method is highly accurate if the number in
all the observational categories is as high as 10. [p. 74]

APPENDIX OF TECHNICAL NOTATION AND FORMULÆ

A. Definition of moments of sample.

The following statistics are known as the first four
moments of the variate x; the first moment is the mean

the second and higher moments are the mean values of
the second and higher powers of the deviations from the
mean

B. Moments of theoretical distribution in terms of
parameters.

[p. 75]

C. Variance of moments derived from samples of N.



D. Corrections in calculating moments.

(a) Correction for mean, if v' is the moment about the
working mean, and v the corresponding value corrected
to the true mean:

v2 = v'2 - v'12,

v3 = v'3 - 3v'1v'2 + 2v'13,

v4 = v'4 - 4v'1v'3 + 6v'12v'2 -
3v'14.

(b) Correction for grouping, if v is the estimate
uncorrected for grouping, and m the corresponding
estimate corrected:

m1 = v2 - 1/12,

m2 = v3,

m3 = v4 -1/2m2 - 1/80. [p. 76]
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IV

TESTS OF GOODNESS OF FIT, INDEPENDENCE AND
HOMOGENEITY; WITH TABLE OF χ2

20. The χ2 Distribution

In the last chapter some use has been made of the χ2

distribution as a means of testing the agreement between
observation and hypothesis; in the present chapter we
shall deal more generally with the very wide class of
problems which may be solved by means of the same
distribution.



The common factor underlying all such tests is the
comparison of the numbers actually observed to fall into
any number of classes with the numbers which upon
some hypothesis are expected. If m is the number
expected, and m+x the number observed in any class, we
calculate

the summation extending over all the classes. This
formula gives the value of χ2, and it is clear that the more
closely the observed numbers agree with those expected
the smaller will χ2 be; in order to utilise the table it is
necessary to know also the value of n with which the table
is to be entered. The rule for finding [p. 78] n is that n is
equal to the number-of degrees of freedom in which the
observed series may differ from the hypothetical; in other
words, it is equal to the number of classes the frequencies
in which may be filled up arbitrarily. Several examples will
be given to illustrate this rule.

For any value of n, which must be a whole number, the
form of distribution of χ2 was established by Pearson in
1900; it is therefore possible to calculate in what
proportion of cases any value of χ2 will be exceeded. This
proportion is represented by P, which is therefore the
probability that χ2 shall exceed any specified value. To
every value of χ2 there thus corresponds a certain value of
P; as χ2 is increased from o to infinity, P diminishes from 1



to 0. Equally, to any value of P in this range there
corresponds a certain value of χ2. Algebraically the
relation between these two quantities is a complex one, so
that it is necessary to have a table of corresponding
values, if the χ2 test is to be available for practical use.

An important table of this sort was prepared by Elderton,
and is known as Elderton's Table of Goodness of Fit.
Elderton gave the values of P to six decimal places
corresponding to each integral value of χ2 from 1 to 30,
and thence by tens to 70. In place of n, the quantity n'
(=n+1) was used, since it was then believed that this could
be equated to the number of frequency classes. Values of
n' from 3 to 30 were given, these corresponding to values
of n from 2 to 29. A table for n'=2, or n=1, was
subsequently supplied by Yule. Owing to copyright
restrictions [p. 79] we have not reprinted Elderton's table,
but have given a new table (Table III. p. 98) in a form
which experience has shown to be more convenient.
Instead of giving the values of P corresponding to an
arbitrary series of values of χ2, we have given the values
of χ2 corresponding to specially selected values of P. We
have thus been able in a compact form to cover those
parts of the distributions which have hitherto not been
available, namely, the values of χ2 less than unity, which
frequently occur for small values of n, and the values
exceeding 30, which for larger values of n become of
importance.

It is of interest to note that the measure of dispersion, φ2,



introduced by the German economist, Lexis, is, if
accurately calculated, equivalent to χ2/n of our notation. In
the many references in English to the method of Lexis, it
has not, I believe, been noted that the discovery of the
distribution of χ2 in reality completed the method of Lexis.
If it were desired to use Lexis' notation, our table could be
transformed into a table of φ2 merely by dividing each
entry by n.

In preparing this table we have borne in mind that in
practice we do not want to know the exact value of P for
any observed χ2, but, in the first place, whether or not the
observed value is open to suspicion. If P is between .1 and
.9 there is certainly no reason to suspect the hypothesis
tested. If it is below .02 it is strongly indicated that the
hypothesis fails to account for the whole of the facts. We
shall not often be astray if we draw a conventional line at
.05, and consider that higher values of χ2 indicate a real
discrepancy. [p. 80]

To compare values of χ2, or of P, by means of a "probable
error" is merely to substitute an inexact (normal)
distribution for the exact distribution given by the χ2 table.

The term Goodness of Fit has caused some to fall into the
fallacy of believing that the higher the value of P the more
satisfactorily is the hypothesis verified. Values over .999
have sometimes been reported which, if the hypothesis
were true, would only occur once in a thousand trials.
Generally such cases have proved to be due to the use of



inaccurate formulæ, but occasionally small values of χ2

beyond the expected range do occur, as in Ex. 4 with the
colony numbers obtained in the plating method of
bacterial counting. In these cases the hypothesis
considered is as definitely disproved as if P had been .001.

When a large number of values of χ2 are available for
testing, it may be possible to reveal discrepancies which
are too small to show up in a single value ; we may then
compare the observed distribution of χ2 with that
expected. This may be done immediately by simply
distributing the observed values of χ2 among the classes
bounded by values given in the χ2 table, as in Ex. 4, p. 61.
The expected frequencies in these classes are easily
written down, and, if necessary, the χ2 test may be used
to test the agreement of the observed with the expected
frequencies.

It is useful to remember that the sum of any number of
quantities, χ2, is distributed in the χ2 distribution, with n
equal to the sum of the values of n corresponding to the
values of χ2 used. Such a test is sensitive, [p. 81] and will
often bring to light discrepancies which are hidden or
appear obscurely in the separate values.

The table we give has values of n up to 30; beyond this
point it will be found sufficient to assume that [sqrt]2χ2 is
distributed normally with unit standard deviation about a
mean [sqrt]2n-1, The values of P obtained by applying
this rule to the values of χ2 given for n=30, may be.



worked out as an exercise. The errors are small for n=30,
and become progressively smaller for higher values of n.

Ex. 8. Comparison with expectation of Mendelian class
frequencies. -- In a cross involving two Mendelian factors
we expect by interbreeding the hybrid (F1) generation to
obtain four classes in the ratio 9:3:3:1; the hypothesis in
this case is that the two factors segregate independently,
and that the four classes of offspring are equally viable.
Are the following observations on Primula (de Winton and
Bateson) in accordance with this hypothesis?

The expected values are calculated from the observed
total, so that the four classes must agree in their sum, and
if three classes are filled in arbitrarily the fourth is
therefore determinate, hence n=3, [p. 82] χ2=10.87, the
chance of exceeding which value is between .01 and .02;
if we take P=.05 as the limit of significant deviation, we
shall say that in this case the deviations from expectation
are clearly significant.

Let us consider a second hypothesis in relation to the



same data, differing from the first in that we suppose that
the plants with crimped leaves are to some extent less
viable than those with flat leaves. Such a hypothesis could
of course be tested by means of additional data; we are
only here concerned with the question whether or no it
accords with the values before us. The hypothesis tells us
nothing of what degree of relative viability to expect; we
therefore take the totals of flat and crimped leaves
observed, and divide each class in the ratio 3:1.

The value of n is now 2, since only two entries can be
made arbitrarily; the value of χ2, however, is so much
reduced that P exceeds .2, and the departure from
expectation is no longer significant. The significant part of
the original discrepancy lay in the proportion of flat to
crimped leaves.

It was formerly believed that in entering the χ2 [p. 83]
table n was always to be equated to one less than the
number of frequency classes; this view led to many
discrepancies, and has since been disproved with the
establishment of the rule stated above. On the old view,



any complication of the hypothesis such as that which in
the above instance admitted differential viability, was
bound to give us apparent improvement in the agreement
between observation and hypothesis. When the change in
n is allowed for this bias disappears, and if the value of P,
rightly calculated; is many fold increased, as in this
instance, the increase may safely be ascribed to an
improvement in the hypothesis, and not to a mere
increase of available constants.

Ex. 9. Comparison with expectation of the Poisson Series
and Binomial Series. -- In Table 5, p. 59, we give the
observed and expected frequencies in the case of a
Poisson Series. In applying the χ2 test to such a series it is
desirable that the number expected should in no group be
less than 5, since the calculated distribution of χ2 is not
very closely realised for very small classes. We therefore
pool the numbers for 0 and 1 cells, and also those for 10
and more, and obtain the following comparison:

[p.84]

Using 10 frequency classes we have χ2=4.390; in



ascertaining the value of n we have to remember that the
expected frequencies have been calculated, not only from
the total number of values observed (400), but also from
the observed mean; there remain, therefore, 8 degrees of
freedom and n=8. For this value the χ2 table shows that P
is between .8 and .9, showing a close but not an
unreasonably close, agreement with expectation.

Similarly in Table 10, p. 67, we have given the value of χ2

based upon 12 classes for the two hypotheses of "true
dice" and "biassed dice"; with "true dice" the expected
values are calculated from the total number of
observations alone, and n=11, but in allowing for bias we
have brought also the means into agreement so that n is
reduced to 10. In the first case χ2 is far outside the range
of the table showing a highly significant departure from
expectation; in the second it appears that P lies between
.2 and .3, so that the value of χ2 is within the expected
range.

21. Tests of Independence, Contingency Tables

A special and important class of cases where the
agreement between expectation and observation may be
tested comprises the tests of independence. If the same
group of individuals is classified in two (or more) different
ways, as persons may be classified as inoculated and not
inoculated, and also as attacked and not attacked by a
disease, then we may require to know if the two
classifications are independent. [p. 85]



Ex. 10: Test of independence in a 2x2 classification. -- In
the simplest case, when each classification comprises
only two classes, we have a fourfold table, as in the
following example (from Greenwood and Yule's data) for
Typhoid:

In testing independence we must compare the observed
values with values calculated so that the four frequencies
are in proportion; since we wish to test independence
only, and not any hypothesis as to the total numbers
attacked, or inoculated, the "expected" values are
calculated from the marginal totals observed, so that the
numbers expected agree with the numbers [p. 86]



observed in the margins; only one value need be
calculated, e.g.

the others are written down at once by subtraction from
the margins. It is thus obvious that the observed values
can differ from those expected in only 1 degree of
freedom, so that in testing independence in a four; fold
table, n =1. Since χ2=56.234 the observations are clearly
opposed to the hypothesis of independence. Without
calculating the expected values, χ2 may, for fourfold
tables, be directly calculated by the formula

where a, b, c, and d are the four observed numbers.

When only one of the classifications is of two classes, the
calculation of χ2 may be simplified to some extent, if it is
not desired to calculate the expected numbers. If a, a'
represent any pair of observed frequencies, and n, n' the
corresponding totals, we calculate from each pair

and the sum of these quantities divided by nn' will be χ2.

Ex. 11. Test of independence in a 2xn classification. --



From the pigmentation survey of Scottish children
(Tocher's data) the following are the numbers of boys and
girls from the same district (No. 1) whose hair colour falls
into each of five classes: [p. 87]

The quantities calculated from each pair of observations
are given below in millions. Thus

approximately; the total of 39 millions odd divided by
2100 and by 1783 gives χ2=10.468· In this table 4 values
could be filled in arbitrarily without conflicting with the
marginal totals, so that n=4. The value of P is between .02
and .05, so that sex difference in the classification by hair
colours is probably significant as judged by this district
alone. The calculation of χ2 from "expected" values,
though somewhat more laborious, would have in this case
the advantage of showing in which classes the boys, and
in which classes the girls, were in excess. It appears from



the numbers in the lowest line that the principle
discrepancy is in the "Jet Black" class.

Ex. 12. Test of independence in a 4 x4 classification. -- As
an example of a more complex contingency table we may
take the results of a series of back-crosses [p. 88] in
mice, involving the two Brown, Self-Piebald (Wachter's
data):

The back-crosses were made in four ways, according as
the male or female parents were heterozygous (F1) in the
two factors, and according to whether the two dominant
genes were received both from one (Coupling) or one
from each parent (Repulsion).

The simple Mendelian ratios may be disturbed by
differential viability, by linkage, or by linked lethals.
Linkage is not suspected in these data, and if the only
disturbance were due to differential viability the four
classes in each experiment should appear in the same
ratio; to test if the data show significant departures we



may apply the χ2 test to the whole 4x4 table. The values
expected on the hypothesis that the proportions are
independent of the matings used, or that the four series
are homogeneous, are given above in brackets. The
contributions to χ2 made by each cell are given on page
89.

The value of χ2 is therefore 21.832; the value of n is 9, for
we could fill up a block of three rows and [p. 89]

three columns and still adjust the remaining entries to
check with the margins. In general for a contingency table
of r rows and c columns n=(r-1)(c-1). For n=9, the value of
χ2 shows that P is less than .01, and therefore the
departures from proportionality are not fortuitous; it is
apparent that the discrepancy is due to the exceptional
number of Brown Piebalds in the F1 males repulsion
series.

It should be noted that the methods employed in this
chapter are not designed to measure the degree of
association between one classification and another, but
solely to test whether the observed departures from



independence are or are not of a magnitude ascribable to
chance. The same degree of variation may be significant
for a large sample but insignificant for a small one; if it is
insignificant we have no reason on the data present to
suspect any degree of association at all, and it is useless
to attempt to measure it. If, on the other hand, it is
significant the value of χ2 indicates the fact, but does not
measure the degree of association. Provided the deviation
is clearly significant, it is of no practical importance
whether P is .01 or ·.000,001, and it is for this reason that
we have not tabulated the value of χ2 beyond .01. To
measure [p. 90] the degree of association it is necessary
to have some hypothesis as to the nature of the departure
from independence to be measured. With Mendelian
frequencies, for example, the cross-over percentage may
be used to measure the degree of association of two
factors, and the significance of evidence for linkage may
be tested by comparing the difference between the cross-
over percentage and 50 per cent (the value for unlinked
factors), with its standard error. Such a comparison, if
accurately carried out, must agree absolutely with the
conclusion drawn from the χ2 test. To take a second
example, the values in a four-fold table may be sometimes
regarded as due to the partition of a normally correlated
pair of variates, according as the values are above or
below arbitrarily chosen dividing-lines ; as if a group of
stature measurements of fathers and sons were divided
between those above and those below 68 inches. In this
case the departure from independence may be properly



measured by the correlation in stature between father and
son; this quantity can be estimated from the observed
frequencies, and a comparison between the value
obtained and its standard error, if accurately carried out,
will agree with the χ2 test as to the significance of the
association; the significance will become more and more
pronounced as the sample is increased in size, but the
correlation obtained will tend to a fixed value. The χ2 test
does not attempt to measure the degree of association,
but as a test of significance it is independent of all
additional hypotheses as to the nature of the association.
[p. 91]

Tests of homogeneity are mathematically identical with
tests of independence; the last example may equally be
regarded in either light. In Chapter III. the tests of
agreement with the Binomial Series were essentially tests
of homogeneity; the ten samples of 100 ears of barley (Ex.
7, p. 72) might have been represented as a 2x10 table. The
χ2 index of dispersion would then be equivalent to the χ2

obtained from the contingency table. The method of this
chapter is more general, and is applicable to cases in
which the successive samples are not all of the same size.

Ex. 13· Homogeneity of different families in respect of
ratio black: red. -- The following data show in 33 families
of Gammarus (Huxley's data) the numbers with black and
red eyes respectively:



The totals 2565 black and 772 red are distinctly not in the
ratio 3:1, which is ascribed to linkage. The question before
us is whether or not all the families indicate the same ratio
between black and red, or whether the discrepancy is due
to a few families only. For the whole table χ2=35.620,
n=32. This is [p. 92] beyond the range of the table, so we
apply the method explained on p. 63:

The series is therefore not significantly heterogeneous;
effectively all the families agree and confirm each other in
indicating the black-red ratio observed in the total.

Exactly the same procedure would be adopted if the black
and red numbers represented two samples distributed
according to some character or characters each into 33
classes. The question "Are these samples of the same
population?" is in effect identical with the question "Is the



proportion of black to red the same in each family?" To
recognise this identity is important, since it has been very
widely disregarded.

Ex. 14· Agreement with expectation of normal variance. --
Closely akin to tests of homogeneity is the use of the χ2

distribution to test whether or not an observed series of
values, normally or nearly normally distributed, agrees in
its variance with expectation. If x1, x2,..., are a sample of a
normal population, the standard deviation of which
population is s, then

is distributed in random samples as is χ2, taking n one less
than the number of the sample. J. W. Bispham gives three
series of experimental values of the partial correlation
coefficient, which he assumes should be [p. 93]
distributed so that 1/s2=29, but which theoretically should
have 1/s2=28. Th, values of S(x-x[bar])2 for the three
samples of 1000, 200, 100 respectively are, as judged
from the grouped data,

35.0278, 7.1071, 3.6169,

whence the values of χ2 on the two theories are



It will be seen that the true formula for the variance gives
slightly the better agreement. That the difference is not
significant may be seen from the last two columns. About
6000 observations would be needed to discriminate
experimentally, with any certainty, between the two
formulæ.

22. Partition of χ2 into its Components

Just as values of χ2 may be aggregated together to make
a more comprehensive test, so in some cases it is
possible to separate the contributions to χ2 made by the
individual degrees of freedom, and so to test the separate
components of a discrepancy.

Ex. I5· Partition of observed discrepancies from
Mendelian expectation. -- The following table (de Winton
and Bateson's data) gives the distribution of sixteen
families of primula in the eight classes obtained from a
back-cross with the triple recessive: [p. 94]



 [p. 95]

The theoretical expectation is that the eight classes
should appear in equal numbers, corresponding to the
hypothesis that in each factor the allelomorphs occur with
equal frequency, and that the three factors are unlinked.
This expectation is fairly realised in the totals of the
sixteen families, but the individual families are somewhat
irregular. The values of χ2 obtained by comparing each
family with expectation are given in the lowest line. These
values each correspond to seven degrees of freedom, and
it appears that in 5 cases out of 16, P is less than .1, and of
these 2 are less than .02. This confirms the impression of
irregularity, and the total value of χ2 (not to be confused
with χ2 derived from the totals), which corresponds to 112
degrees of freedom, is 151.78. Now



so that, judged by the total χ2, the evidence for
departures from expectation in individual families, is clear.

Each family is free to differ from expectation in seven
independent ways. To carry the analysis further, we must
separate the contribution to χ2 of each of these seven
degrees of freedom. Mathematically the subdivision may
be carried out in more than one way, but the only way
which appears to be of biological interest is that which
separates the parts due to inequality of the allelomorphs
of the three factors, and the three possible linkage
connexions. If we separate [p. 95] the frequencies into
positive and negative values according to the following
seven ways,

then it will be seen that all seven subdivisions are wholly
independent, since any two of them agree in four signs
and disagree in four. The first three degrees of freedom
represent the inequalities in the allelomorphs of the three
factors Ch, G, and W; the next are the degrees of freedom
involved in an enquiry into the linkage of the three pairs of
factors, while the seventh degree of freedom has no



simple biological meaning but is necessary to complete
the analysis. If we take in the first family, for example, the
difference between the numbers of the W and w plants,
namely 8, then the contribution of this degree of freedom
to χ2 is found by squaring the difference and dividing by
the number in the family, e.g. 82/72=889. In this way the
contribution of each of the 112 degrees of freedom in the
sixteen families is found separately, as shown in the
following table: [p. 97]

Looking at the total values of χ2 for each column, since n
is 16 for these, we see that all except the first have values
of P between .05 and .95, while the contribution of the
first degree of freedom is very clearly significant. It
appears then that the greater part, if not the whole, of the



discrepancy is ascribable to the behaviour of the
Sinensis-Stellata factor, and its behaviour strongly
suggests close linkage with a recessive lethal gene of one
of the familiar types. In four families, 107-121, the only
high contribution is in the first column. If these four
families are excluded χ2=97.545, and this exceeds the
expectation for n=84 by only just over the standard error;
the total discrepancy cannot therefore be regarded as
significant. There does, however, appear to be an excess
of very large entries, and it is noticeable of the seven
largest, [p. 98-99]

 [p. 100]

six appear in pairs belonging to the same family. The
distribution of the remaining 12 families according to the



value of P is as follows:

from which it would appear that there is some slight
evidence of an excess of families with high values of χ2.
This effect, like other non-significant effects, is only worth
further discussion in connexion with some plausible
hypothesis capable of explaining it.

N.B. -- Table of χ2, p. 98.
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V

TESTS OF SIGNIFICANCE OF MEANS, DIFFERENCES
OF MEANS, AND REGRESSION COEFFICIENTS

23. The Standard Error of the Mean

The fundamental proposition upon which the statistical
treatment of mean values is based is that -- If a quantity
be normally distributed with standard deviation s, then the
mean of a random sample of n such quantities is normally
distributed with standard deviation s/[sqrt]n.



The utility of this proposition is somewhat increased by
the fact that even if the original distribution were not
exactly normal, that of the mean usually tends to
normality, as the size of the sample is increased; the
method is therefore applied widely and legitimately to
cases in which we have not sufficient evidence to assert
that the original distribution was normal, but in which we
have reason to think that it does not belong to the
exceptional class of distributions for which the distribution
of the mean does not tend to normality.

If, therefore, we know the standard deviation of a
population, we can calculate the standard deviation of [p.
102] the mean of a random sample of any size, and so test
whether or not it differs significantly from any fixed value.
If the difference is many times greater than the standard
error, it is certainly significant, and it is a convenient
convention to take twice the standard error as the limit of
significance ; this is roughly equivalent to the
corresponding limit P=.05, already used for the c2

distribution. The deviations in the normal distribution
corresponding to a number of values of P are given in the
lowest line of the table of t at the end of this chapter (p.
137)· More detailed information has been given in Table I.

Ex. 16. Significance of mean of a large sample. -- We may
consider from this point of view Weldon's die-casting
experiment (Ex. 5, p. 66). The variable quantity is the
number of dice scoring "5" or "6" in a throw of 12 dice. In
the experiment this number varies from zero to eleven,



with an observed mean of 4.0524; the expected mean, on
the hypothesis that the dice were true, is 4, so that the
deviation observed is .0524· If now we estimate the
variance of the whole sample of 26,306 values as
explained on p. 50, but without using Sheppard's
correction (for the data are not grouped), we find

s2 = 2.69825,

whence s2/n = .0001025,

and s/[sqrt]n = .01013.

The standard error of the mean is therefore about .01, and
the observed deviation is nearly 5.2 times as great; thus
by a slightly different path we arrive [p. 103] at the same
conclusion as that of p. 68. The difference between the
two methods is that our treatment of the mean does not
depend upon the hypothesis that the distribution is of the
binomial form, but on the other hand we do assume the
correctness of the value of s derived from the
observations. This assumption breaks down for small
samples, and the principal purpose of this chapter is to
show how accurate allowance can be made in these tests
of significance for the errors in our estimates of the
standard deviation.

To return to the cruder theory, we may often, as in the
above example, wish to compare the observed mean with
the value appropriate to a hypothesis which we wish to
test; but equally or more often we wish to compare two



experimental values and to test their agreement. In such
cases we require the standard error of the difference
between two quantities whose standard errors are known;
to find this we make use of the proposition that the
variance of the difference of two independent variates is
equal to the sum of their variances. Thus, if the standard
deviations are s1, s2, the variances are s1

2, s2
2;

consequently the variance of the difference is s1
2+s2

2,
and the standard error of the difference is [sqrt]s1

2+s2
2.

Ex. 17· Standard error of difference of means from large
samples. -- In Table 2 is given the distribution in stature of
a group of men, and also of a group of women; the means
are 68.64 and 63.85 inches, giving a difference of 4.79
inches. The variance obtained for the men was 7.2964
square inches; this is the value obtained by dividing the
sum of the squares of [p. 104] the deviations by 1164 ; if
we had divided by 1163, to make the method comparable
to that appropriate to small samples, we should have
found 7.3027. Dividing this by 1164, we find the variance
of the mean is .006274. Similarly the variance for the
women is .63125, which divided by 1456 gives the
variance of the mean of the women as .004335. To find
the variance of the difference between the means, we
must add together these two contributions, and find in all
.010609; the standard error of the difference between the
means is therefore .1030 inches. The sex difference in
stature may therefore be expressed as

4.79 [plus or minus] .103 inches.



It is manifest that this difference is significant, the value
found being over 46 times its standard error. In this case
we can not only assert a significant difference, but place
its value with some confidence at between 4½ and 5
inches. It should be noted that we have treated the two
samples as independent, as though they had been given
by different authorities; as a matter of fact, in many cases
brothers and sisters appeared in the two groups; since
brothers and sisters tend to be alike in stature, we have
overestimated the probable error of our estimate of the
sex difference. Whenever possible, advantage should be
taken of such facts in designing experiments. In the
common phrase, sisters provide a better "control" for
their brothers than do unrelated women. The sex
difference could therefore be more accurately estimated
from the comparison of each brother with his own sister.
In [p. 105] the following example (Pearson and Lee's
data), taken from a correlation table of stature of brothers
and sisters, the material is nearly of this form; it differs
from it in that in some instances the same individual has
been compared with more than one sister, or brother.

Ex. I8. Standard error of mean of differences. -- The
following table gives the distribution of the excess in
stature of a brother over his sister in 1401 pairs



Treating this distribution as before we obtain:
mean=4.895, variance=6.4074, variance of
mean=.004573, standard error of mean =.0676 ; showing
that we may estimate the mean sex difference as 4¾ to to
5 inches.

In the above examples, which are typical of the use of the
standard error applied to mean values, we have assumed
that the variance of the population is known with
exactitude. It was pointed out by "Student" in 1908, that
with small samples, such as are of necessity usual in field
and laboratory experiments, the variance of the
population can only be roughly estimated from the
sample, and that the errors of estimation seriously affect
the use of the standard error. [p. 106]

If x (for example the mean of a sample) is a value with
normal distribution and s is its true standard error, then
the probability that x/s exceeds any specified value may
be obtained from the appropriate table of the normal
distribution; but if we do not know s, but in its place have
s, an estimate of the value of s,the distribution required
will be that of x/s, and this is not normal. The true value
has been divided by a factor, s/s, which introduces an



error. We have seen in the last chapter that the
distribution in random samples of s2/s2 is that of c2/n,
when n is equal to the number of degrees of freedom, of
the group (or groups) of which s2 is the mean square
deviation. Consequently the distribution of s/s calculable,
and if its variation is completely independent of that of x/s
(as in the cases to which this method is applicable), then
the true distribution of x/s can be calculated, and accurate
allowance made for its departure from normality. The only
modification required in these cases depends solely on
the number n, representing the number of degrees of
freedom available for the estimation of s. The necessary
distributions were given by "Student" in 1908; fuller tables
have since been given by the same author, and at the end
of this chapter (p. 137) we give the distributions in a
similar form to that used for our table of c2.

24. The Significance of the Mean of a Unique Sample

If x1, x2, ..., xn, is a sample of n' values of a variate, x, and if
this sample constitutes the whole of [p. 107] the
information available on the point in question, then we
may test whether the mean of x differs significantly from
zero, by calculating the statistics



The distribution of t for random samples of a normal
population distributed about zero as mean, is given in the
table of t for each value of n. The successive columns
show, for each value of n, the values of t for which P, the
probability of falling outside the range [plus or minus]t,
takes the values .9,...,.01, at the head of the columns.
Thus the last column shows that, when n=10, just I per
cent of such random samples will give values of t
exceeding +3.169, or less than -3.169. If it is proposed to
consider the chance of exceeding the given values of t, in
a positive (or negative) direction only, then the values of P
should be halved. It will be seen from the table that for any
degree of certainty we require higher values of t, the
smaller the value of n. The bottom line of the table,
corresponding to infinite values of n, gives the values of a
normally distributed variate, in terms of its standard
deviation, for the same values of P.

Ex. 19. Significance of mean of a small sample. -- The
following figures (Cushny and Peebles' data) [p. 108]
which I quote from Student's paper show the result of an
experiment with ten patients, on the effect of the optical



isomers of hyoscyamine hydrobromide in producing sleep.

The last column gives a controlled comparison of the
efficacy of the two drugs as soporifics, for the same
patients were used to test each; from the series of
differences we find

For n=9, only one value in a hundred will exceed 3250 by
chance, so that the difference between the results is



clearly significant. By the methods of the [p. 109] previous
chapters we should, in this case, have been led to the
same conclusion with almost equal certainty; for if the two
drugs had been equally effective, positive and negative
signs would occur in the last column with equal frequency.
Of the 9 values other than zero, however, all are positive,
and it appears from the binomial distribution,

(½+½)9,

that all will be of the same sign, by chance, only twice in
512 trials. The method of the present chapter differs from
that in taking account of the actual values and not merely
of their signs, and is consequently the more reliable
method when the actual values are available.

To test whether two samples belong to the same
population, or differ significantly in their means. If x'1,
x'2,…,x'n1+1, and If x1, x2,…,xn2+1 be two samples, the
significance of the difference between their means may
be tested by calculating the following statistics.



The means are calculated as usual; the standard [p. 110]
deviation is estimated by pooling the sums of squares
from the two samples and dividing by the total number of
the degrees of freedom contributed by them; if a were the
true standard deviation, the variance of the first mean
would be s2/(n1+1), of the second mean s2/(n2+1), and
therefore of the difference s2{1/(n1+1)+1/(n2+1)}; t is
therefore found by dividing x[bar]-x'[bar] by its standard
error as estimated, and the error of the estimation is
allowed for by entering the table with n equal to the
number of degrees of freedom available for estimating s;
that is n=n1+n2. It is thus possible to extend Student's
treatment of the error of a -an to the comparison of the
means of two samples.

Ex. 20. Significance of difference of means of small
samples. -- Let us suppose that the above figures (Table
27) had been obtained using different patients for the two
drugs; the experiment would have been less well
controlled, and we should expect to obtain less certain
results from the same number of observations, for it is a
priori probable, and the above figures suggest, that
personal variations in response to the drugs will be to
some extent correlated.

Taking, then, the figures to represent two different sets of
patients, we have



The value of P is, therefore, between .1 and .05, and [p.
111] cannot be regarded as significant. This example
shows clearly the value of design in small scale
experiments, and that the efficacy of such design is
capable of statistical measurement.

The use of Student's distribution enables us to appreciate
the value of observing a sufficient number of parallel
cases; their value lies, not only in the fact that the
probable error of a mean decreases inversely as the
square root of the number of parallels, but in the fact that
the accuracy of our estimate of the probable error
increases simultaneously. The need for duplicate
experiments is sufficiently widely realised; it is not so
widely understood that in some cases, when it is desired
to place a high degree of confidence (say P =.01) on the
results, triplicate experiments will enable us to detect with
confidence differences as small as one-seventh of those
which, with a duplicate experiment, would justify the same
degree of confidence.

The confidence to be placed in a result depends not only
on the actual value of the mean value obtained, but
equally on the agreement between parallel experiments.
Thus, if in an agricultural experiment a first trial shows an



apparent advantage of 8 tons to the acre, and a duplicate
experiment shows an advantage of 9 tons, we have n=1,
t=17, and the results would justify some confidence that a
real effect had been observed; but if the second
experiment had shown an apparent advantage of 18 tons,
although the mean is now higher, we should place not
more but less confidence in the conclusion that the
treatment was [p. 112] beneficial, for t has fallen to 2.6, a
value which for n=1 is often exceeded by chance. The
apparent paradox may be explained by pointing out that
the difference of 10 tons between the experiments
indicates the existence of uncontrolled circumstances so
influential that in both cases the apparent benefit may be
due to chance, whereas in the former case the relatively
close agreement of the results suggests that the
uncontrolled factors are not so very influential. Much of
the advantage of further replication lies in the fact that
with duplicates our estimate of the importance of the
uncontrolled factors is so extremely hazardous.

In cases in which each observation of one series
corresponds in some respects to a particular observation
of the second series, it is always legitimate to take the
differences and test them as in Ex. 18, 19 as a single
sample; but it is not always desirable to do so. A more
precise comparison is obtainable by this method only if
the corresponding values of the two series are positively
correlated, and only if they are correlated to a sufficient
extent to counterbalance the loss of precision due to



basing our estimate of variance upon fewer degrees of
freedom. An example will make this plain.

Ex. 21. Significance of change in bacterial numbers. --
The following table shows the mean number of bacterial
colonies per plate obtained by four slightly different
methods from soil samples taken at 4 P.M. and 8 P.M.
respectively (H. G. Thornton's data): [p. 113]

From the series of differences we have x[bar]=+10.775,
¼s2=3.756, t=5.560, n=3, whence the table shows that P
is between .01 and .02. If, On the contrary, we use the
method of Ex. 20, and treat the two separate series, we
find x[bar]-x'[bar]=+10.775, ½s2=2.188, t =7.285, n=6;
this is not only a larger value of n but a larger value of t,
which is now far beyond the range of the table, showing
that P is extremely small. In this case the differential
effects of the different methods are either negligible, or
have acted quite differently in the two series, so that
precision was lost in comparing each value with its
counterpart in the other series. In cases like this it



sometimes occurs that one method shows no significant
difference, while the other brings it out; if either method
indicates a definitely significant difference, its testimony
cannot be ignored, even if the other method fails to show
the effect. When no correspondence exists between the
members of one series and those of the other, the second
method only is available. [p. 114]

25. Regression Coefficients

The methods of this chapter are applicable not only to
mean values, in the strict sense of the word, but to the
very wide class of statistics known as regression
coefficients. The idea of regression is usually introduced
in connection with the theory of correlation, but it is in
reality a more general, and, in some respects, a simpler
idea, and the regression co-efficients are of interest and
scientific importance in many classes of data where the
correlation coefficient, if used at all, is an artificial concept
of no real utility. The following qualitative examples are
intended to familiarise the student with the concept of
regression, and to prepare the way for the accurate
treatment of numerical examples.

It is a commonplace that the height of a child depends on
his age, although knowing his age, we cannot accurately
calculate his height. At each age the heights are scattered
over a considerable range in a frequency distribution
characteristic of that age; any feature of this distribution,
such as the mean, will be a continuous function of age.



The function which represents the mean height at any age
is termed the regression function of height on age; it is
represented graphically by a regression curve, or
regression line. In relation to such a regression line age is
termed the independent variate, and height the
dependent variate.

The two variates bear very different relations to the
regression line. If errors occur in the heights, this [p. 115]
will not influence the regression of height on age,
provided that at all ages positive and negative errors are
equally frequent, so that they balance in the averages. On
the contrary, errors in age will in general alter the
regression of height on age, so that from a record with
ages subject to error, or classified in broad age-groups,
we should not obtain the true physical relationship
between mean height and age. A second difference
should be noted: the regression function does not depend
on the frequency distribution of the independent variate,
so that a true regression line may be obtained even when
the age groups are arbitrarily selected, as when an
investigation deals with children of "school age." On the
other hand a selection of the dependent variate will
change the regression line altogether.

It is clear from the above instances that the regression of
height on age is quite different from the regression of age
on height; and that one may have a definite physical
meaning in cases in which the other has only the
conventional meaning given to it by mathematical



definition. In certain cases both regressions are of equal
standing; thus, if we express in terms of the height of the
father the average adult height of sons of fathers of a
given height, observation shows that each additional inch
of the fathers' height corresponds to about half an inch in
the mean height of the sons. Equally, if we take the mean
height of the fathers of sons of a given height, we find that
each additional inch of the sons' height corresponds to
half an inch in the mean height of the fathers. No selection
[p. 116] has been exercised in the heights either of fathers
or of sons; each variate is distributed normally, and the
aggregate of pairs of values forms a normal correlation
surface. Both regression lines are straight, and it is
consequently possible to express the facts of regression
in the simple rules stated above.

When the regression line with which we are concerned is
straight, or, in other words, when the regression function
is linear, the specification of regression is much simplified,
for in addition to the general means we have only to state
the ratio which the increment of the mean of the
dependent variate bears to the corresponding increment
of the independent variate. Such ratios are termed
regression coefficients. The regression function takes the
form

Y = a+b(x-x[bar]),

where b is the regression coefficient of y on x, and Y is the
mean value of y for each value of x. The physical



dimensions of the regression coefficient depend on those
of the variates; thus, over an age range in which growth is
uniform we might express the regression of height on age
in inches per annum, in fact as an average growth rate,
while the regression of father's height on son's height is
half an inch per inch, or simply ½. Regression coefficients
may, of course, be positive or negative.

Curved regression lines are of common occurrence ; in
such cases we may have to use such a regression
function as

Y = a+bx+cx2+dx3, [p. 117]

in which all four coefficients of the regression function
may, by an extended use of the term, be called regression
coefficients. More elaborate functions of x may be used,
but their practical employment offers difficulties in cases
where we lack theoretical guidance in choosing the form
of the regression function, and at present the simple
power series (or, polynomial in x) is alone in frequent use.
By far the most important case in statistical practice is the
straight regression line.

26. Sampling Errors of Regression Coefficients

The straight regression line with formula

Y = a+b(x-x[bar])

is fitted by calculating from the data, the two statistics



these are estimates, derived from the data, of the two
constants necessary to specify the straight line; the true
regression formula, which we should obtain from an
infinity of observations, may be represented by

a+b(x-x[bar]),

and the differences a-a, b-b, are the errors of random
sampling of our statistics. If s2 represent the variance of y
for any value of x about a mean given by the above
formula, then the variance of a, the mean of n'
observations, will be s2/n', while that of b, which is [p. 118]
merely a weighted mean of the values of y observed, will
be

In order to test the significance of the difference between
b, and any hypothetical value, b, to which it is to be
compared, we must estimate the value of s2; the best
estimate for the purpose is

found by summing the squares of the deviations of y from
its calculated value Y, and dividing by (n'-2). The reason
that the divisor is (n'-2) is that from the n' values of y two



statistics have already been calculated which enter into
the formula for Y, consequently the group of differences,
y-Y, represent in reality only n'-2 degrees of freedom.

When n' is small, the estimate of s2 obtained above is
somewhat uncertain, and in comparing the difference b-b
with its standard error, in order to test its significance we
shall have to use Student's method, with n=n'-2. When n'
is large this distribution tends to the normal distribution.
The value of t with which the table must be entered is

Similarly, to test the significance of the difference
between a and any hypothetical value a, the table is
entered with [p. 119]

this test for the significance of a will be more sensitive
than the method previously explained, if the variation in y
is to any considerable extent expressible in terms of that
of x, for the value of s obtained from the regression line
will then be smaller than that obtained from the original
group of observations. On the other hand, one degree of
freedom is always lost, so that if b is small, no greater
precision is obtained.

Ex. 22. Effect of nitrogenous fertilisers in maintaining



yield. -- The yields of dressed grain in bushels per acre
shown in Table 29 were obtained from two plots on
Broadbalk wheat field during thirty years; the only
difference in manurial treatment was that "9a" received
nitrate of soda, while "7b" received an equivalent quantity
of nitrogen as sulphate of ammonia. In the course of the
experiment plot "9a" appears to be gaining in yield on plot
"7b." Is this apparent gain significant?

A great part of the variation in yield from year to year is
evidently similar in the two plots; in consequence, the
series of differences will give the clearer result. In one
respect the above data are especially simple, for the thirty
values of the independent variate form a series with equal
intervals between the successive values, with only one
value of the dependent variate corresponding to each. In
such cases the work is simplified by using the formula

S(x-x[bar])2 = 1/12 n' (n'2-1), [p. 120]



where n' is the number of terms, or 30 in this case. To
evaluate 6 it is necessary to calculate

S{y(x-x[bar])};



this may be done in several ways. We may multiply [p. 121]
the successive values of y by -29, -27,… +27, +29, add,
and divide by 2. This is the direct method suggested by
the formula. The same result is obtained by multiplying by
1, 2, ..., 30 and subtracting 15½

times the sum of values of y; the latter method may be
conveniently carried out by successive addition. Starting
from the bottom of the column, the successive sums 2.69,
9.76, 6.82, ... are written down, each being found by
adding a new value of y to the total already accumulated;
the sum of the new column, less 15½ times the sum of the
previous column, will be the value required. In this case
we find the value 599.615, and dividing by 2247.5, the
value of b is found to be .2668. The yield of plot "9a" thus
appears to have gained on that of "7b" at a rate
somewhat over a quarter of a bushel per annum.

To estimate the standard error of 6, we require the value
of

S(y-Y)2;

knowing the value of b, it is easy to calculate the thirty
values of Y from the formula

Y =y[bar]+(x-x[bar])b;

for the first value, x-x[bar]=-14.5 and the remaining values



may be found in succession by adding b each time. By
subtracting each value of Y from the corresponding y,
squaring, and adding, the required quantity may be
calculated directly. This method is laborious, and it is
preferable in practice to utilise the algebraical fact that [p.
122]

The work then consists in squaring the values of y and
adding, then subtracting the two quantities which can be
directly calculated from the mean value of y and the value
of b. In using this shortened method it should be noted
that small errors in y[bar] and b may introduce
considerable errors in the result, so that it is necessary to
be sure that these are calculated accurately to as many
significant figures as are needed in the quantities to be
subtracted. Errors of arithmetic which would have little
effect in the first method, may altogether vitiate the
results if the second method is used. The subsequent
work in calculating the standard error of b may best be
followed in the scheme given beside the table of data ; the
estimated standard error is .1169, so that in testing the
hypothesis that b=0 that is that plot "9a" has not been
gaining on plot "7b," we divide b by this quantity and find
t=2.282. Since s was found from 28 degrees of freedom
n=28, and the table of t shows that P is between .02 and
.05.·



The result must be judged significant, though barely so; in
view of the data we cannot ignore the possibility that on
this field, and in conjunction with the other manures used,
nitrate of soda has conserved the fertility better than
sulphate of ammonia ; these data do not, however,
demonstrate the point beyond possibility of doubt.

The standard error of y[bar], calculated from the above
data, is 1.012, so that there can be no doubt that the [p.
123] difference in mean yields is significant; if we had
tested the significance of the mean, without regard to the
order of the values, that is calculating s2 by dividing
1020.56 by 29, the standard error would have been 1.083.
The value of b was therefore high enough to have reduced
the standard error. This suggests the possibility that if we
had fitted a more complex regression line to the data the
probable errors would be further reduced to an extent
which would put the significance of b beyond doubt. We
shall deal later with the fitting of curved regression lines to
this type of data.

Just as the method of comparison of means is applicable
when the samples are of different sizes, by obtaining an
estimate of the error by combining the sums of squares
obtained from the two different samples, so we may
compare regression coefficients when the series of values
of the independent variate are not identical; or if they are
identical we can ignore the fact in comparing the
regression coefficients.



Ex. 23. Comparison of relative growth rate of two cultures
of an alga. -- Table 30 shows the logarithm (to the base
10) of the volumes occupied by algal cells on successive
days, in parallel cultures, each taken over a period during
which the relative growth rate was approximately
constant. In culture A nine values are available, and in
culture B eight (Dr. M. Bristol-Roach's data).

The method of finding Sy(x-x[bar]) by summation is
shown in the second pair of columns: the original values
are added up from the bottom, giving successive [p. 124]
totals from 6.087 to 43.426; the final value should, of
course, tally with the total below the original values. From
the sum of the column of totals is subtracted the sum of
the original values multiplied by 5 for A and by 4½ for B.
The differences are Sy(x-x[bar]); these must be divided
by the respective values of S(x-xbar])2,



namely, 60 and 42, to give the values of b, measuring the
relative growth rates of the two cultures. To test if the
difference is significant we calculate in the two cases
S(y2), and subtract successively the product of the mean
with the total, and the product of b with Sy(x-x[bar]); this
process leaves the two values of S(y-Y)2, which are added
as shown in the table, and the sum divided by n, to give
s2. The value of n is found by adding the 7 degrees of
freedom from series A to the 6 degrees from series B, and
is therefore 13. [p. 125] Estimates of the variance of the
two regression coefficients are obtained by dividing s2 by
60 and 42, and that of the variance of their difference is
the sum of these. Taking the square root we find the
standard error to be .01985, and t=1.844· The difference
between the regression coefficients, though relatively



large, cannot be regarded as significant. There is not
sufficient evidence to assert culture B was growing more
rapidly than culture A.

27. The Fitting of Curved Regression Lines

Little progress has been made with the theory of the
fitting of curved regression lines, save in the limited but
most important case when the variability of the
independent variate is the same for all values of the
dependent variate, and is normal for each such value.
When this is the case a technique has been fully worked
out for fitting by successive stages any line of the form

Y = a+bx+cx2+dx3+.. ;

we shall give details of the case where the successive
values of x are at equal intervals.

As it stands the above form would be inconvenient in
practice, in that the fitting could not be carried through in
successive stages. What is required is to obtain
successively the mean of y, an equation linear in x, an
equation quadratic in x, and so on, each equation being
obtained from the last by adding, a new term being
calculated by carrying a single process of [p. 126]
computation through a new stage. In order to do this we
take

Y = A + Bx1 + Cx2 + Dx3 + …,



where x1, x2, x3, shall be functions of x of the 1st, 2nd, and
3rd degrees, out of which the regression formula may be
built. It may be shown that the functions required for this
purpose may be expressed in terms of the moments of
the x distribution, as follows:

where the values of the moment functions have been
expressed in terms of n', the number of observations, as
far as is needed for fitting curves up to the 5th degree.
The values of x are taken to increase by unity.

Algebraically the process of fitting may now be
represented by the equations

 [p. 127]



and, in general, the coefficient of the term of the rth
degree is

As each term is fitted the regression line approaches more
nearly to the observed values, and the sum of the squares
of the deviation

S(y-Y)2

is diminished. It is desirable to be able to calculate this
quantity, without evaluating the actual values of Y at each
point of the series; this can be done by subtracting from
S(y2) the successive quantities

and so on. These quantities represent the reduction which
the sum of the squares of the residuals suffers each time
the regression curve is fitted to a higher degree; and
enable its value to be calculated at any stage by a mere
extension of the process already used in the preceding
examples. To obtain an estimate, s2, of the residual



variance, we divide by n, the number of degrees of
freedom left after fitting, which is found from n' by
subtracting from it the number of constants in the
regression formula. Thus, if a straight line has been fitted,
n=n'-2; while if a curve of the fifth degree has been fitted,
n=n'-6. [p. 128]

28. The Arithmetical Procedure of Fitting

The main arithmetical labour of fitting curved regression
lines to data of this type may be reduced to a repetition of
the process of summation illustrated in Ex. 23. We shall
assume that the values of y are written down in a column
in order of increasing values of x, and that at each stage
the summation is commenced at the top of the column
(not at the bottom, as in that example). The sums of the
successive columns will be denoted by S1, S2, ... When
these values have been obtained, each is divided by an
appropriate divisor, which depends only on n', giving us a
new series of quantities a, b, c,... according to the
following equations

and so on.



From these a new series of quantities a', b', c',… are
obtained by equations independent n', of which we give
below the first six, which are enough to carry the process
of fitting up to the 5th degree:

 [p. 129]

These new quantities are proportional to the required
coefficients of the regression equation, and need only be
divided by a second group of divisors to give the actual
values. The equations are

the numerical part of the factor being

for the term of degree r.



If an equation of degree r has been fitted, the estimate of
the standard errors of the coefficients are all based upon
the same value of s2, i.e.

from which the estimated standard error of any
coefficient, such as that of xp, is obtained by dividing by

and taking out the square root. The number of degrees of
freedom upon which the estimate is based is (n'-r-1), and
this must be equated to n in using the table of t.

A suitable example of use of this method may be obtained
by fitting the values of Ex. 22 (p. 120) with a curve of the
second or third degree. [p. 130]

29. Regression with several Independent Variates

It frequently happens that the data enable us to express
the average value of the dependent variate y, in terms of a
number of different independent variates x1, x2, … xp. For
example, the rainfall at any point within a district may be
recorded at a number of stations for which the longitude,
latitude, and altitude are all known. If all of these three
variates influence the rainfall, it may be required to
ascertain the average effect of each separately. In
speaking of longitude, latitude, and altitude as



independent variates, all that is implied is that it is in terms
of them that the average rainfall is to be expressed; it is
not implied that these variates vary independently, in the
sense that they are uncorrelated. On the contrary, it may
well happen that the more southerly stations lie on the
whole more to the west than do the more northerly
stations, so that for the stations available longitude
measured to the west may be negatively correlated with
latitude measure to the north. If, then, rainfall increased to
the west but was independent of latitude, we should
obtain merely, by comparing the rainfall recorded at
different latitudes, a fictitious regression indicating a
falling off of rain with increasing latitude. What we require
is an equation taking account of all three variates at each
station, and agreeing as nearly as possible with the values
recorded; this is called a partial regression equation, and
its coefficients are known as partial regression
coefficients. [p. 131]

To simplify the algebra we shall suppose that y, x1, x2, x3,
are all measured from their mean values, and that we are
seeking a formula of the form

Y = b1,x1+b2x2+b3x3.

If S stands for summation over all the sets of observations
we construct the three equations



of which the nine coefficients are obtained from the data
either by direct multiplication and addition, or, if the data
are numerous, by constructing correlation tables for each
of the six pairs of variates. The three simultaneous
equations for b1, b2, and b3, are solved in the ordinary
way; first b3 is eliminated from the first and third, and from
the second and third equations, leaving two equations for
b1 and b2; eliminating b2 from these, b1 is found, and
thence by substitution, b2 and b3.

It frequently happens that, for the same set of values of
the independent variates, it is desired to examine the
regressions for more than one set of values of the
dependent variates; for example, if for the same set of
rainfall stations we had data for several different months
or years. In such cases it is preferable to avoid solving the
simultaneous equations afresh on each occasion, but to
obtain a simpler formula which may be applied to each
new case.

This may be done by solving once and for all the [p. 132]
three sets, each consisting of three simultaneous
equations:



the three solutions of these three sets of equations may
be written

Once the six values of c are known, then the partial
regression coefficients may be obtained in any particular
case merely by calculating S(x1y), S(x2y), S(x3y) and
substituting in the formulæ,

The method of partial regression is of very wide
application. It is worth noting that the different
independent variates may be related in any way; for
example, if we desired to express the rainfall as a linear
function of the latitude and longitude, and as a quadratic
function of the altitude, the square of the altitude would
be introduced as a fourth independent variate, without in
any way disturbing the process outlined above, save that



S(x3x4), S(x3
3) would be calculated directly from the

distribution of altitude.

In estimating the sampling errors of partial [p. 133]
regression coefficients we require to know how nearly our
calculated value, Y, has reproduced the observed values
of y; as in previous cases, the sum of the squares of (y-Y)
may be calculated by differences, for, with three variates,

S(y-Y)2 = S(y2) - b1S(x1y) - b2S(x2y) - b3S(x3y).·

If we had n' observations, and p independent variates, we
should therefore find

and to test if b1, differed significantly from any
hypothetical value, b1, we should calculate

entering the table of t with n=n'-p-1.

In the practical use of a number of variates it is convenient
to use cards, on each of which is entered the values of the
several variates which may be required. By sorting these
cards in suitable grouping units with respect to any two
variates the corresponding correlation table may be



constructed with little risk of error, and thence the
necessary sums of squares and products obtained.

Ex. 24. Dependence of rainfall on position and altitude. --
The situations of 57 rainfall stations in Hertfordshire have
a mean longitude 12'.4 W., a mean latitude 51° 48'.5 N.,
and a mean altitude 302 feet. Taking as units 2 minutes of
longitude, one [p. 134] minute of latitude, and 20 feet of
altitude, the following values of the sums of squares and
products of deviations from the mean were obtained:

To find the multipliers suitable for any particular set of
weather data from these stations, first solve the equations

1934.1 c11 - 772.2 c12 + 924.1 c13 = 1
-772.2 c11 + 2889.5 c12 + 119.6 c13 = 0

+924.1 c11 + 119.6 c13[sic] + 1750.8 c13 = 0;

using the last equation to eliminate c13 from the first two,
we have

2532.3 c11 - 1462.5 c12 = 1.7508
=1462.5 c11 + 5044.6 c12 = 0;

from these eliminate c12, obtaining

10,635.5 c11 = 8.8321;



whence

c11 = .00083043, c12 = .00024075, c13 = -.00045476

the last two being obtained successively by substitution.

Since the corresponding equations for c12, c22, c23 differ
only in changes in the right-hand number, we can at once
write down

-1462.5 c12 + 5044.6 c22 = 1.7508;

whence, substituting for c12 the value already obtained,

c22 = .00041686, c23 = -.00015554; [p. 135]

finally, to obtain c33 we have only to substitute in the
equation

924.1c13 + 119.6c23 + 1750.8c33 = 1,

giving

c33 =.00082182.

It is usually worth while, to facilitate the detection of small
errors by checking, to retain as above one more decimal
place than the data warrant.

The partial regression of any particular weather data on
these three variates can now be found with little labour. In
January 1922 the mean rainfall recorded at these stations
was 3.87 inches, and the sums of products of deviations



with those of the three independent variates were (taking
0.1 inch as the unit for rain)

S(x1y) = +1137.4, S(x2y) = -592.9, S(x3y) = +891.8;

multiplying these first by c11, c12, c13 and adding, we have
for the partial regression on longitude

b2 = .39624;

similarly using the multipliers c12, c22, c23 we obtain for
the partial regression on latitude

b2 = -11204;

and finally, by using c13, c23, c33,

b3 = .30787

gives the partial regression on altitude.

Remembering now the units employed, it appears that in
the month in question rainfall increased by .0198 of an
inch for each minute of longitude westwards, [p. 136] is
decreased by .0112 of an inch for each minute of latitude
northwards, and increased by .00154 of an inch for each
foot of altitude.

Let us calculate to what extent the regression on altitude
is affected by sampling errors. For the 57 recorded
deviations of the rainfall from its mean value, in the units
previously used



S(y2) = 1786.6;

whence, knowing the values of b1, b2, and b3, we obtain
by differences

S(y-Y)2 = 994.9.

To find s2, we must divide this by the number of degrees
of freedom remaining after fitting a formula involving three
variates -- that is, by 53 -- so that

s2 = 8.772;

multiplying this by c33, and taking the square root,

s[sqrt]c33 = .12421.

Since n is as high as 53 we shall not be far wrong in taking
the regression of rainfall on altitude to be in working units
.308, with a standard error .124; or in inches of rain per
100 feet as .154, with a standard error .062.
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VI

THE CORRELATION COEFFICIENT

30. No quantity is more characteristic of modern
statistical work than the correlation coefficient, and no
method has been applied successfully to such various
data as the method of correlation. Observational data in
particular, in cases where we can observe the occurrence
of various possible contributory causes of a phenomenon,
but cannot control them, has been given by its means an



altogether new importance. In experimental work proper
its position is much less central; it will be found useful in
the exploratory stages of an enquiry, as when two factors
which had been thought independent appear to be
associated in their occurrence; but it is seldom, with
controlled experimental conditions, that it is desired to
express our conclusion in the form of a correlation
coefficient.

One of the earliest and most striking successes of the
method of correlation was in the biometrical study of
inheritance. At a time when nothing was known of the
mechanism of inheritance, or of the structure of the
germinal material, it was possible by this method to
demonstrate the existence of inheritance, and to [p. 139]
"measure its intensity"; and this in an organism in which
experimental breeding could not be practised, namely,
Man. By comparison of the results obtained from the
physical measurements in man with those obtained from
other organisms, it was established that man's nature is
not less governed by heredity than that of the rest of the
animate world. The scope of the analogy was further
widened by demonstrating that correlation coefficients of
the same magnitude were obtained for the mental and
moral qualities in man as for the physical measurements.

These results are still of fundamental importance, for not
only is inheritance in man still incapable of experimental
study, and existing methods of mental testing are still
unable to analyse the mental disposition, but even with



organisms suitable for experiment and measurement, it is
only in the most favourable cases that the several factors
causing fluctuating variability can be resolved, and their
effects studied, by Mendelian methods. Such fluctuating
variability, with an approximately normal distribution, is
characteristic of the majority of the useful qualities of
domestic plants and animals; and although there is strong
reason to think that inheritance in such cases is ultimately
Mendelian, the biometrical method of study is at present
alone capable of holding out hopes of immediate
progress.

We give in Table 31 an example of a correlation table. It
consists of a record in compact form of the stature of
1376 fathers and daughters. (Pearson and Lee's data.)
The measurements are grouped in [p. 140-141] [table] [p.
142] inches, and those whose measurement was recorded
as an integral number of inches have been split; thus a
father recorded as of 67 inches would appear as 1/2 under
66.5 and 1/2 under 67.5. Similarly with the daughters; in
consequence, when both measurements are whole
numbers the case appears in four quarters. This gives the
table a confusing appearance, since the majority of
entries are fractional, although they represent
frequencies. It is preferable, if bias in measurement can be
avoided, to group the observations in such a way that
each possible observation lies wholly within one group.



The most obvious feature of the table is that cases do not
occur in which the father is very tall and the daughter very
short, and vice versa ; the upper right-hand and lower
left-hand corners of the table are blank, so that we may
conclude that such occurrences are too rare to occur in a
sample of about 1400 cases. The observations recorded
lie in a roughly elliptical figure lying diagonally across the
table. If we mark out the region in which the frequencies
exceed 10 it appears that this region, apart from natural
irregularities, is similar, and similarly situated. The
frequency of occurrence increases from all sides to the
central region of the table, where a few frequencies over
30 may be seen. The lines of equal frequency are roughly
similar and similarly situated ellipses. In the outer zone



observations occur only occasionally, and therefore
irregularly; beyond this we could only explore by taking a
much larger sample.

The table has been divided into four quadrants by [p. 143]
marking out central values of the two variates; these
values, 67.5 inches for the fathers and 63.5 inches for the
daughters, are near the means. When the table is so
divided it is obvious that the lower right-hand and upper
left-hand quadrants are distinctly more populous than the
other two; not only are more squares occupied, but the
frequencies are higher. It is apparent that tall men have tall
daughters more frequently than the short men, and vice
versa. The method of correlation aims at measuring the
degree to which this association exists.

The marginal totals show the frequency distributions of
the fathers and the daughters respectively. These are
both approximately normal distributions, as is frequently
the case with biometrical data collected without selection.
This marks a frequent difference between biometrical and
experimental data. An experimenter would perhaps have
bred from two contrasted groups of fathers of, for
example, 63 and 72 inches in height; all his fathers would
then belong to these two classes, and the correlation
coefficient, if used, would be almost meaningless. Such
an experiment would serve to ascertain the regression of
daughter's height in father's height, and so to determine
the effect on the daughters of selection applied to the
fathers, but it would not give us the correlation coefficient



which is a descriptive observational feature of the
population as it is, and may be wholly vitiated by
selection.

Just as normal variation with one variate may be specified
by a frequency formula in which the [p. 144] logarithm of
the frequency is a quadratic function of the variate, so
with two variates the frequency may be expressible in
terms of a quadratic function of the values of the two
variates. We then have a normal correlation surface, for
which the frequency may conveniently be written in the
form

In this expression x and y are the deviations of the two
variates from their means, s1 and s2 are the two standard
deviations, and r is the correlation between x and y. The
correlation in the above expression may be positive or
negative, but cannot exceed unity in magnitude; it is a
pure number without physical dimensions. If r=0, the
expression for the frequency degenerates into the
product of the two factors

showing that the limit of the normal correlation surface,



when the correlation vanishes, is merely that of two
normally distributed variates varying in complete
independence. At the other extreme, when p is +1 or -1,
the variation of the two variates is in strict proportion, so
that the value of either may be calculated accurately from
that of the other. In other words, we cease strictly to have
two variates, but merely two measures of the same
variable quantity.

If we pick out the cases in which one variate has an
assigned value, we have what is termed an array; [p. 145]
the columns and rows of the table may, except as regards
variation within the group limits, be regarded as arrays.
With normal correlation the variation within an array may
be obtained from the general formula, by giving x a
constant value, (say) a, and dividing by the total
frequency with which this value occurs; then we have

showing (i.) that the variation of y within the array is
normal ; (ii.) that the mean value of y for that array is
ras2/s1, so that the regression of y on x is linear, with
regression coefficient



and (iii.) that the variance of y within the array is s2
2(1-r2),

and is the same within each array. We may express this by
saying that of the total variance of y the fraction (1-r2) is
independent of x, while the remaining fraction, r2, is
determined by, or calculable from, the value of x.

These relations are reciprocal, the regression of x on y is
linear, with regression coefficient rs1/s2; the correlation r is
thus the geometric mean of the two regressions. The two
regression lines representing the mean value of x for given
y, and the mean value of y for given x, cannot coincide
unless r=[plus or minus]1. The variation of x within an
array in which y is fixed, is normal with variance equal to
s1

2(1-r2), so that we may say that of the variance of x the
fraction (1-r2) [p. 146] is independent of y, and the
remaining fraction, r2, is determined by, or calculable
from, the value of y.

Such are the formal mathematical consequences of
normal correlation. Much biometric data certainly shows a
general agreement with the features to be expected on
this assumption; though I am not aware that the question
has been subjected to any sufficiently critical enquiry.
Approximate agreement is perhaps all that is needed to
justify the use of the correlation as a quantity descriptive
of the population; its efficacy in this respect is undoubted,
and it is not improbable that in some cases it affords a
complete description of the simultaneous variation of the
variates.



31. The Statistical Estimation of the Correlation

Just as the mean and the standard deviation of a normal
population in one variate may be most satisfactorily
estimated from the first two moments of the observed
distribution, so the only satisfactory estimate of the
correlation, when the variates are normally correlated, is
found from the "product moment." If x and y represent the
deviations of the two variates from their means, we
calculate the three statistics s1, s2, r by the three
equations

ns1
2 = S(x2), ns2

2 = S(y2), nrs1s2 = S(xy);

then s1 and s2 are estimates of the standard deviations s1,
and s2, and r is an estimate of the correlation r. Such an
estimate is called the correlation coefficient, or the
product moment correlation, the latter term [p. 147]
referring to the summation of the product terms, xy, in the
last equation.

The above method of calculation might have been derived
from the consideration that the correlation of the
population is the geometric mean of the two regression
coefficients; for our estimates of these two regressions
would be



so that it is in accordance with these estimates to take as
our estimate of r

which is in fact the product moment correlation.

Ex. 25. Parental correlation in stature. -- The numerical
work required to calculate the correlation coefficient is
shown below in Table 32.

The first eight columns require no explanation, since they
merely repeat the usual process of finding the mean and
standard deviation of the two marginal distributions. It is
not necessary actually to find the mean, by dividing the
total of the third column, 480.5, by 1376, since we may
work all through with the undivided totals. The correction
for the fact that our working mean is not the true mean is
performed by subtracting (480.5)2/1376 in the 4th
column; a similar correction appears at the foot of the 8th

column, and at the foot of the last column. The correction
for the sum of products is performed by subtracting
4805x2605/1376· This correction of [p. 148] [table] [p.
149] the product term may be positive or negative; if the
total deviations of the two variates are of opposite sign,
the correction must be added. The sum of squares, with
and without Sheppard's correction (1376/12), are shown
separately; there is no corresponding correction to be



made to the product term.

The 9th column shows the total deviations of the
daughter's height for each of the 18 columns in which the
table is divided. When the numbers are small, these may
usually be written down by inspection of the table. In the
present case, where the numbers are large, and the
entries are complicated by quartering, more care is
required. The total of column 9 checks with that of the 3rd
column. In order that it shall do so, the central entry +15.5,
Which does not contribute to the products, has to be
included. Each entry in the 9th column is multiplied by the
paternal deviation to give the 10th column. In the present
case all the entries in column 10 are positive; frequently
both positive and negative entries occur, and it is then
convenient to form a separate column for each. A useful



check is afforded by repeating the work of the last two
columns, interchanging the variates; we should then find
the total deviation of the fathers for each array of
daughters, and multiply by the daughters deviation. The
uncorrected totals, 5136.25, should then agree. This
check is especially useful with small tables, in which the
work of the last two columns, carried out rapidly, is liable
to error.

The value of the correlation coefficient, using Sheppard's
correction, is found by dividing 5045.28 [p. 150] by the
geometric mean of 9209.0 and 10,392.5; its value is
+.5157· If Sheppard's correction had not been used, we
should have obtained +.5097. The difference is in this
case not large compared to the errors of random
sampling, and the full effects on the distribution in random
samples of using Sheppard's correction have never been
fully examined, but there can be little doubt that
Sheppard's correction should be used, and that its use
gives generally an improved estimate of the correlation.
On the other hand, the distribution in random samples of
the uncorrected value is simpler and better understood,
so that the uncorrected value should be used in tests of
significance, in which the effect of correction need not, of
course, be overlooked. For simplicity coarse grouping
should be avoided where such tests are intended. The
fact that with small samples the correlation obtained by
the use of Sheppard's correction may exceed unity,
illustrates the disturbance introduced into the random



sampling distribution.

32. Partial Correlations

A great extension of the utility of the idea of correlation
lies in its application to groups of more than two variates.
In such cases, where the correlation between each pair of
three variates is known, it is possible to eliminate any one
of them, and so find what the correlation of the other two
would be in a population selected so that the third variate
was constant.

Ex. 26. Elimination of age in organic correlations [p. 151]
with growing children. -- For example, it was found
(Mumford and Young's data) in a group of boys of
different ages, that the correlation of standing height with
chest girth was +.836. One might expect that part of this
association was due to general growth with age. It would
be more desirable for many purposes to know the
correlation between the variates for boys of a given age;
but in fact only a few of the boys will be exactly of the
same age, and even if we make age groups as broad as a
year, we shall have in each group much fewer than the
total number measured. In order to utilise the whole
material, we only need to know the correlations of
standing height with age, and of chest girth with age.
These are given as .714 and .708.·

The fundamental formula in calculating partial correlation
coefficients may be written



Here the three variates are numbered 1, 2, and 3, and we
wish to find the correlation between 1 and 2, when 3 is
eliminated; this is called the "partial" correlation between
1 and 2, and is designated by r12. 3, to show that variate 3
has been eliminated. The symbols r12, r13, r23, indicate the
correlations found directly between each pair of variates;
these correlations being distinguished as "total"
correlations.

Inserting the numerical values in the above formula we
find r12. 3 =·.668, showing that when age is eliminated the
correlation, though still considerable, [p. 152] has been
markedly reduced. The mean value given by the above-
mentioned authors for the correlations found by grouping
the boys by years, is .653, not a greatly different value. In
a similar manner, two or more variates may be eliminated
in succession; thus with four variates, we may first
eliminate variate 4, by thrice applying the above formula
to find r12. 4, r13. 4, and r23. 4. Then applying the same
formula again, to these three new values, we have

The labour increases rapidly with the number of variates
to be eliminated. To eliminate s variates, the number of



operations involved, each one application of the above
formula is 1/6 s(s+1)(s+2); for values of s from 1 to 6 this
gives 1, 4, 10, 20, 35, 56 operations. Much of this labour
may be saved by using tables of [sqrt]1-r2 such as that
published by J. R. Miner.[1]

The meaning of the correlation coefficient should be
borne clearly in mind. The original aim to measure the
"strength of heredity" by this method was based clearly
on the supposition that the whole class of factors which
tend to make relatives alike, in contrast to the unlikeness
of unrelated persons, may be grouped together as
heredity. That this is so for all practical purposes is, I
believe, admitted, but the correlation does not tell us that
this is so; it merely [p. 153] tells us the degree of
resemblance in the actual population studied, between
father and daughter. It tells us to what extent the height of
the father is relevant information respecting the height of
the daughter, or, otherwise interpreted, it tells us the
relative importance of the factors which act alike upon the
heights of father and daughter, compared to the totality of
factors at work. If we know that B is caused by A, together
with other factors independent of A, and that B has no
influence on A, then the correlation between A and B does
tell us how important, in relation to the other causes at
work, is the influence of A. If we have not such knowledge,
the correlation does not tell us whether A causes B, or B
causes A, or whether both influences are at work,
together with the effects of common causes.



This is true equally of partial correlations. If we know that
a phenomenon A is not itself influential in determining
certain other phenomena B, C, D, ..., but on the contrary is
probably directly influenced by them, then the calculation
of the partial correlations A with B, C, D, ... in each case
eliminating the remaining values, will form a most valuable
analysis of the causation of A. If on the contrary we
choose a group of social phenomena with no antecedent
knowledge of the causation or absence of causation
among them, then the calculation of correlation
coefficients, total or partial, will not advance us a step
towards evaluating the importance of the causes at work.

The correlation between A and B measures, on a [p. 154]
conventional scale, the importance of the factors which
(on a balance of like and unlike action) act alike in both A
and B, as against the remaining factors which affect A and
B independently. If we eliminate a third variate C, we are
removing from the comparison all those factors which
become inoperative when C is fixed. If these are only
those which affect A and B independently, then the
correlation between A and B, whether positive or negative,
will be numerically increased. We shall have eliminated
irrelevant disturbing factors, and obtained, as it were, a
better controlled experiment. We may also require to
eliminate C if these factors act alike, or oppositely on the
two variates correlated; in such a case the variability of C
actually masks the effect we wish to investigate. Thirdly, C
may be one of the chain of events by the mediation of



which A affects B, or vice versa. The extent to which C is
the channel through which the influence passes may be
estimated by eliminating C; as one may demonstrate the
small effect of latent factors in human heredity by finding
the correlation of grandparent and grandchild, eliminating
the intermediate parent. In no case, however, can we
judge whether or not it is profitable to eliminate a certain
variate unless we know, or are willing to assume, a
qualitative scheme of causation. For the purely descriptive
purpose of specifying a population in respect of a number
of variates, either partial or total correlations are effective,
and correlations of either type may be of interest.

As an illustration we may consider in what sense [p. 155]
the coefficient of correlation does measure the "strength
of heredity," assuming that heredity only is concerned in
causing the resemblance between relatives; that is, that
any environmental effects are distributed at haphazard. In
the first place, we may note that if such environmental
effects are increased in magnitude, the correlations would
be reduced ; thus the same population, genetically
speaking, would show higher correlations if reared under
relatively uniform nutritional conditions, than they would if
the nutritional conditions had been very diverse; although
the genetical processes in the two cases were identical.
Secondly, if environmental effects were at all influential
(as in the population studied seems not to be indeed the
case), we should obtain higher correlations from a mixed
population of genetically very diverse strains, than we



should from a more uniform population. Thirdly, although
the influence of father on daughter is in a certain sense
direct, in that the father contributes to the germinal
composition of his daughter, we must not assume that
this fact is necessarily the cause of the whole of the
correlation; for it has been shown that husband and wife
also show considerable resemblance in stature, and
consequently taller fathers tend to have taller daughters
partly because they choose, or are chosen by, taller wives.
For this reason, for example, we should expect to find a
noticeable positive correlation between step-fathers and
step-daughters; also that, when the stature of the wife is
eliminated, the partial correlation between father and
daughter will be found to be lower than the total
correlation. [p. 156] These considerations serve to some
extent to define the sense in which the somewhat vague
phrase, "strength of heredity," must be interpreted, in
speaking of the correlation coefficient. It will readily be
understood that, in less well understood cases, analogous
considerations may be of some importance, and should if
possible be critically considered.

33. Accuracy of the Correlation Coefficient

With large samples, and moderate or small correlations,
the correlation obtained from a sample of n pairs of values
is distributed normally about the true value r, with
variance,



it is therefore usual to attach to an observed value r, a
standard error (1-r2)/[srqt]n-1, or (1-r2)/[sqrt]n. This
procedure is only valid under the restrictions stated
above; with small samples the value of r is often very
different from the true value, r, and the factor 1-r2,
correspondingly in error; in addition the distribution of r is
far from normal, so that tests of significance based on the
above formula are often very deceptive. Since it is with
small samples, less than 100, that the practical research
worker ordinarily wishes to use the correlation coefficient,
we shall give an account of more accurate methods of
handling the results.

In all cases the procedure is alike for total and for partial
correlations. Exact account may be taken of the
differences in the distributions in the two cases, [p. 157]
by deducting unity from the sample number for each
variate eliminated; thus a partial correlation found by
eliminating three variates, and based on data giving 13
values for each variate, is distributed exactly as is a total
correlation based on 10 pairs of values.

34. The Significance of an Observed Correlation

In testing the significance of an observed correlation we
require to calculate the probability that such a correlation



should arise, by random sampling, from an uncorrelated
population. If the probability is low we regard the
correlation as significant. The table of t given at the end of
the preceding chapter (p. 137) may be utilised to make an
exact test. If n' be the number of pairs of observations on
which the correlation is based, and r the correlation
obtained, without using Sheppard's correction, then we
take

and it may be demonstrated that the distribution of t so
calculated, will agree with that given in the table.

It should be observed that this test, as is obviously
necessary, is identical with that given in the last chapter
for testing whether or not the linear regression coefficient
differs significantly from zero.

TABLE V.A (p. 174) allows this test to be applied directly
from the value of r, for samples up to 100 pairs of
observations. Taking the four definite levels [p. 158] of
significance, represented by P =·.10, .05, .02, and .01, the
table shows for each value of n, from 1 to 20, and thence
by larger intervals to 100, the corresponding values of r.

Ex. 27. Significance of a correlation coefficient between



autumn rainfall and wheat crop. -- For the twenty years,
1885-1904, the mean wheat yield of Eastern England was
found to be correlated with the autumn rainfall; the
correlation found was -.629. Is this value significant? We
obtain in succession

For n=18, this shows that P is less than .01, and the
correlation is definitely significant. The same conclusion
may be read off at once from Table V.A entered with n=18.

If we had applied the standard error,

we should have



a much greater value than the true one, very much
exaggerating the significance. In addition, assuming that r
was normally distributed (n = [infinity]), the significance of
the result would between further exaggerated. This
illustration will suffice to show how deceptive, in small
samples, is the use of the standard error of the [p. 159]
correlation coefficient, on the assumption that it will be
normally distributed. Without this assumption the
standard error is without utility. The misleading character
of the formula is increased if n' is substituted for n'-1, as is
often done. Judging from the normal deviate 4.536, we
should suppose that the correlation obtained would be
exceeded in random samples from uncorrelated material
only 6 times in a million trials. Actually it would be
exceeded about 3000 times in a million trials, or with 500
times the frequency supposed.

It is necessary to warn the student emphatically against
the misleading character of the standard error of the
correlation coefficient deduced from a small sample,
because the principal utility of the correlation coefficient
lies in its application to subjects of which little is known,
and upon which the data are relatively scanty. With
extensive material appropriate for biometrical
investigations there is little danger of false conclusions
being drawn, whereas with the comparatively few cases to
which the experimenter must often look for guidance, the
uncritical application of methods standardised in
biometry, must be so frequently misleading as to



endanger the credit of this most valuable weapon of
research. It is not true, as the above example shows, that
valid conclusions cannot be drawn from small samples; if
accurate methods are used in calculating the probability,
we thereby make full allowance for the size of the sample,
and should be influenced in our judgment only by the
value of the-probability indicated. The great increase of
certainty which accrues from increasing data is [p. 160]
reflected in the value of P, if accurate methods are used.

Ex. 28. Significance of a partial correlation coefficient. --
In a group of 32 poor law relief unions, Yule found that the
percentage change from 1881 to 1891 in the percentage
of the population in receipt of relief was correlated with
the corresponding change in the ratio of the numbers
given outdoor relief to the numbers relieved in the
workhouse, when two other variates had been eliminated,
namely, the corresponding changes in the percentage of
the population over 65, and in the population itself.

The correlation found by Yule after eliminating the two
variates was +.457; such a correlation is termed a partial
correlation of the second order. Test its significance.

It has been demonstrated that the distribution in random
samples of partial correlation coefficients may be derived
from that of total correlation coefficients merely by
deducting from the number of the sample, the number of
variates eliminated. Deducting 2 from the 32 unions used,
we have 30 as the effective number of the sample; hence



n=28

Calculating t from r as before, we find

t=2.719,

whence it appears from the table that P lies between .02
and .01. The correlation is therefore significant. This, of
course, as in other cases, is on the assumption [p. 161]
that the variates correlated (but not necessarily those
eliminated) are normally distributed; economic variates
seldom themselves give normal distributions, but the fact
that we are here dealing with rates of change makes the
assumption of normal distribution much more plausible.
The values given in Table V.(A) for n=25, and n=30, give a
sufficient indication of the level of significance attained by
this observation.

35. Transformed Correlations

In addition to testing the significance of a correlation, to
ascertain if there is any substantial evidence of
association at all, it is also frequently required to perform
one or more of the following operations, for each of which
the standard error would be used in the case of a normally
distributed quantity. With correlations derived from large
samples the standard error may, therefore, be so used,
except when the correlation approaches [plus or minus]1;
but with small samples such as frequently occur in
practice, special methods must be applied to obtain
reliable results.



(i.) To test if an observed correlation differs
significantly from a given theoretical value.

(ii.) To test if two observed correlations are
significantly different.

(iii.) If a number of independent estimates of a
correlation are available, to combine them into an
improved estimate.

(iv.) To perform tests (i.) and (ii.) with such average
values. [p. 162]

Problems of these kinds may be solved by a method
analogous to that by which we have solved the problem of
testing the significance of an observed correlation. In that
case we were able from the given value r to calculate a
quantity t which is distributed in a known manner, for
which tables were available. The transformation led
exactly to a distribution which had already been studied.
The transformation which we shall now employ leads
approximately to the normal distribution in which all the
above tests may be carried out without difficulty. Let

z = ½{loge(1+r) - loge(1-r)}

then as r changes from 0 to 1, z will pass from 0 to
[infinity]. For small values of r, z is nearly equal to r, but as
r approaches unity, z increases without limit. For negative
values of r, z is negative. The advantage of this
transformation lies in the distribution of the two quantities



in random samples. The standard deviation of r depends
on the true value of the correlation, r; as is seen from the
formula

Since r is unknown, we have to substitute for it the
observed value r, and this value will not, in small samples,
be a very accurate estimate of r. The standard error of z is
simpler in form,

and is practically independent of the value of the [p. 163]
correlation in the population from which the sample is
drawn.

In the second place the distribution of r is skew in small
samples, and even for large samples it remains very skew
for high correlations. The distribution of z is not strictly
normal, but it tends to normality rapidly as the sample is
increased, whatever may be the value of the correlation.
We shall give examples to test the effect of the departure
of the z distribution from normality.

Finally the distribution of r changes its form rapidly as r is



changed ; consequently no attempt can be made, with
reasonable hope of success, to allow for the skewness of
the distribution. On the contrary, the distribution of z is
nearly constant in form, and the accuracy of tests may be
improved by small corrections for skewness; such
corrections are, however, in any case somewhat laborious,
and we shall not deal with them. The simple assumption
that z is normally distributed will in all ordinary cases be
sufficiently accurate.

These three advantages of the transformation from r to z
may be seen by comparing Figs. 7 and 8. In Fig. 7 are
shown the actual distributions of r, for 8 pairs of
observations, from populations having correlations 0 and
0.8; Fig. 8 shows the corresponding distribution curves for
z. The two curves in Fig. 7 are widely different in their
modal heights; both are distinctly non-normal curves; in
form also they are strongly contrasted, the one being
symmetrical, the other highly unsymmetrical. On the
contrary, in [p. 164] Fig. 8 the two curves do not differ
greatly in height; although not exactly normal in form, they
come so close to it, even for a small sample of 8 pairs of
observations, [p. 165] that the eye cannot detect the
difference; and this approximate normality holds up to the
extreme limits r=[plus or minus]1. One additional feature is
brought out by Fig. 8 ; in the distribution for r=0.8,
although the curve itself is as symmetrical as the eye can
judge of, yet the ordinate of zero error is not centrally
placed. The figure, in fact, reveals the small bias which is



introduced into the estimate of the correlation coefficient
as ordinarily calculated; we shall treat further of this bias
in the next section, and in the following chapter shall deal
with a similar bias introduced in the calculation of
intraclass correlations.



To facilitate the transformation we give in Table V.(B) (p.
175) the values of r corresponding to values of z,



proceeding by intervals of ,01, from 0 to 3. In the earlier
part of this table it will be seen that the values of r and z
do not differ greatly; but with higher correlations small
changes in r correspond to relatively large changes in z. In
fact, measured on the z-scale, a correlation of .99 differs
from a correlation .95 by more than a correlation .6
exceeds zero. The values of z give a truer picture of the
relative importance of correlations of different sizes, than
do the values of r.

To find the value of z corresponding to a given value of r,
say .6, the entries in the table lying on either side of .6, are
first found, whence we see at once that z lies between .69
and .70; the interval between these entries is then divided
proportionately to find the fraction to be added to .69. In
this case we have 20/64, or .31, so that z=.6931. Similarly,
in finding [p. 166] the value of r corresponding to any
value of z, say .9218, we see at once that it lies between
.7259 and .7306; the difference is 47, and 18 per cent of
this gives 8 to be added to the former value, giving us
finally r=.7267. The same table may thus be used to
transform r into z, and to reverse the process.

Ex. 29. Test of the approximate normality of the
distribution of z. -- In order to illustrate the kind of
accuracy obtainable by the use of z, let us take the case
that has already been treated by an exact method in Ex.
26. A correlation of -.629 has been obtained from 20 pairs
of observations ; test its significance.



For r=-.629 we have, using either a table of natural
logarithms, or the special table for z, z=.7398. To divide
this by its standard error is equivalent to multiplying it by
[sqrt]17.· This gives -3.050, which we interpret as a
normal deviate. From the table of normal deviates it
appears that this value will be exceeded about 23 times in
10,000 trials. The true frequency, as we have seen, is
about 30 times in 10,000 trials. The error tends slightly to
exaggerate the significance of the result.

Ex. 30.· Further test of the normality of the distribution of
z. -- A partial correlation +.457 was obtained from a
sample of 32, after eliminating two variates. Does this
differ significantly from zero? Here z =.4935; deducting
the two eliminated variates the effective size of the
sample is 30, and the standard error of z is 1/[sqrt]27;
multiplying z by [sqrt]27, we have as a. normal variate
2.564. Table IV. shows, as before, that P is just over ·.01.
There is a slight exaggeration [p. 167] of significance, but
it is even slighter than in the previous example.

The above examples show that the z transformation will
give a variate which, for most practical purposes, may be
taken to be normally distributed. In the case of simple
tests of significance the use of the table of t is to be
preferred ; in the following examples this method is not
available, and the only method available which is both
tolerably accurate and sufficiently rapid for practical use
lies in the use of z.



Ex. 31· Significance of deviation from expectation of an
observed correlation coefficient. -- In a sample of 25 pairs
of parent and child the correlation was found to be .60. Is
this value consistent with the view that the true
correlation in that character was .46?

The first step is to find the difference of the
corresponding values of z. This is shown below:

To obtain the normal deviate we multiply by [sqrt]22, and
obtain .918. The deviation is less than the standard
deviation, and the value obtained is therefore quite in
accordance with the hypothesis. [p. 168]

Ex. 32. Significance of difference between two observed
correlations. -- Of two samples the first, of 20 pairs, gives
a correlation .6, the second, of 25 pairs, gives a
correlation .8: are these values significantly different?

In this case we require not only the difference of the
values of z, but the standard error of the difference. The
variance of the difference is the sum of the reciprocals of
17 and 22; the work is shown below:



The standard error which is appended to the difference of
the values of z is the square root of the variance found on
the same line. The difference does not exceed twice the
standard error, and cannot therefore be judged significant.
There is thus no sufficient evidence to conclude that the
two samples are not drawn from equally correlated
populations.

Ex. 33· Combination of values from small samples. --
Assuming that the two samples in the last example were
drawn from equally correlated populations, estimate the
value of the correlation.

The two values of z must be given weight inversely
proportional to their variance. We therefore [p. 169]
multiply the first by 17, the second by 22 and add, dividing
the total by 39. This gives an estimated value of z for the
population, and the corresponding value of r may be
found from the table.



The weighted average value of z is .9218, to which
corresponds the value r=.7267; the value of z so obtained
may be regarded as subject to normally distributed errors
of random sampling with variance equal to 1/39· The
accuracy is therefore equivalent to that of a single value
obtained from 42 pairs of observations. Tests of
significance may thus be applied to such averaged values
of z, as to individual values.

36. Systematic Errors

In connexion with the averaging of correlations obtained
from small samples it is worth while to consider the
effects of two classes of systematic errors, which,
although of little or no importance when single values only
are available, become of increasing importance as larger
numbers of samples are averaged.

The value of z obtained from any sample is an estimate of
a true value, r, belonging to the sampled [p. 170]
population, just as the value of r obtained from a sample is
an estimate of a population value, r. If the method of
obtaining the correlation were free from bias, the values of



z would be normally distributed about a mean z[bar],
which would agree in value with z. Actually there is a small
bias which makes the mean value of z somewhat greater
numerically than z; thus the correlation, whether positive
or negative, is slightly exaggerated. This bias may
effectively be corrected by subtracting from the value of z
the correction

For single samples this correction is unimportant, being
small compared to the standard error of z. For example, if
n'=10, the standard error of z is .378, while the correction
is r/l8 and cannot exceed .056. If, however, z[bar] were
the mean of 1000 such values of z, derived from samples
of 10, the standard error of z[bar] is only .012, and the
correction, which is unaltered by taking the mean, may
become of great importance.

The second type of systematic error is that introduced by
neglecting Sheppard's correction. In calculating the value
of z, we must always take the value of r found without
using Sheppard's correction, since the latter complicates
the distribution.

But the omission of Sheppard's correction introduces a
systematic error, in the opposite direction to that
mentioned above; and which, though normally very small,



appears in large as well as in small samples. In case of
averaging the correlations from a number of [p. 171]
coarsely grouped small samples, the average z should be
obtained from values of r found without Sheppard's
correction, and to the result a correction, representing the
average effect of Sheppard's correction, may be applied.

37. Correlation between Series

The extremely useful case in which it is required to find
the correlation between two series of quantities, such as
annual figures, arranged in order at equal intervals of time,
is in reality a case of partial correlation, although it may be
treated more directly by the method of fitting curved
regression lines given in the last chapter (p. 128).

If, for example, we had a record of the number of deaths
from a certain disease for successive years, and wished to
study if this mortality were associated with meteorological
conditions, or the incidence of some other disease, or the
mortality of some other age group, the outstanding
difficulty in the direct application of the correlation
coefficient is that the number of deaths considered
probably exhibits a progressive change during the period
available. Such changes may be due to changes in the
population among which the deaths occur, whether it be
the total population of a district, or that of a particular age
group, or to changes in the sanitary conditions in which
the population lives, or in the skill and availability of
medical assistance, or to changes in the racial or genetic



composition of the population. In any case it is usually
found that the changes are still apparent [p. 172] when
the number of deaths is converted into a death-rate on
the existing population in each year, by which means one
of the direct effects of changing population is eliminated.

If the progressive change could be represented effectively
by a straight line it would be sufficient to consider the
time as a third variate, and to eliminate it by calculating
the corresponding partial correlation coefficient. Usually,
however, the change is not so simple, and would need an
expression involving the square and higher powers of the
time adequately to represent it. The partial correlation
required is one found by eliminating not only t, but t2, t3,
t4, ..., regarding these as separate variates; for if we have
eliminated all of these up to (say) the fourth degree, we
have incidentally eliminated from the correlation any
function of the time of the fourth degree, including that by
which the progressive change is best represented.

This partial correlation may be calculated directly from the
coefficients of the regression function obtained as in the
last chapter (p. 128). If y and y' are the two quantities to
be correlated, we obtain for y the coefficients A, B, C,...,
and for y' the corresponding coefficients A', B', C', .. .; the
sum of the squares of the deviations of the variates from
the curved regression lines are obtained as before, from
the equations



[p. 173]

while the sum of the products may be obtained from the
similar equation

the required partial correlation being, then,

In this process the number of variates eliminated is equal
to the degree of t to which the fitting has been carried; it
will be understood that both variates must be fitted to the
same degree, even if one of them is capable of adequate
representation by a curve of lower degree than is the
other. [p. 174]



[p. 175]



Footnotes

[1] Tables of [sqrt]1-r2 for Use in Partial Correlation, and in
Trigonometry. Johns Hopkins Press, 1922.
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VI

THE CORRELATION COEFFICIENT

30. No quantity is more characteristic of modern
statistical work than the correlation coefficient, and no
method has been applied successfully to such various
data as the method of correlation. Observational data in
particular, in cases where we can observe the occurrence
of various possible contributory causes of a phenomenon,
but cannot control them, has been given by its means an



altogether new importance. In experimental work proper
its position is much less central; it will be found useful in
the exploratory stages of an enquiry, as when two factors
which had been thought independent appear to be
associated in their occurrence; but it is seldom, with
controlled experimental conditions, that it is desired to
express our conclusion in the form of a correlation
coefficient.

One of the earliest and most striking successes of the
method of correlation was in the biometrical study of
inheritance. At a time when nothing was known of the
mechanism of inheritance, or of the structure of the
germinal material, it was possible by this method to
demonstrate the existence of inheritance, and to [p. 139]
"measure its intensity"; and this in an organism in which
experimental breeding could not be practised, namely,
Man. By comparison of the results obtained from the
physical measurements in man with those obtained from
other organisms, it was established that man's nature is
not less governed by heredity than that of the rest of the
animate world. The scope of the analogy was further
widened by demonstrating that correlation coefficients of
the same magnitude were obtained for the mental and
moral qualities in man as for the physical measurements.

These results are still of fundamental importance, for not
only is inheritance in man still incapable of experimental
study, and existing methods of mental testing are still
unable to analyse the mental disposition, but even with



organisms suitable for experiment and measurement, it is
only in the most favourable cases that the several factors
causing fluctuating variability can be resolved, and their
effects studied, by Mendelian methods. Such fluctuating
variability, with an approximately normal distribution, is
characteristic of the majority of the useful qualities of
domestic plants and animals; and although there is strong
reason to think that inheritance in such cases is ultimately
Mendelian, the biometrical method of study is at present
alone capable of holding out hopes of immediate
progress.

We give in Table 31 an example of a correlation table. It
consists of a record in compact form of the stature of
1376 fathers and daughters. (Pearson and Lee's data.)
The measurements are grouped in [p. 140-141] [table] [p.
142] inches, and those whose measurement was recorded
as an integral number of inches have been split; thus a
father recorded as of 67 inches would appear as 1/2 under
66.5 and 1/2 under 67.5. Similarly with the daughters; in
consequence, when both measurements are whole
numbers the case appears in four quarters. This gives the
table a confusing appearance, since the majority of
entries are fractional, although they represent
frequencies. It is preferable, if bias in measurement can be
avoided, to group the observations in such a way that
each possible observation lies wholly within one group.



The most obvious feature of the table is that cases do not
occur in which the father is very tall and the daughter very
short, and vice versa ; the upper right-hand and lower
left-hand corners of the table are blank, so that we may
conclude that such occurrences are too rare to occur in a
sample of about 1400 cases. The observations recorded
lie in a roughly elliptical figure lying diagonally across the
table. If we mark out the region in which the frequencies
exceed 10 it appears that this region, apart from natural
irregularities, is similar, and similarly situated. The
frequency of occurrence increases from all sides to the
central region of the table, where a few frequencies over
30 may be seen. The lines of equal frequency are roughly
similar and similarly situated ellipses. In the outer zone



observations occur only occasionally, and therefore
irregularly; beyond this we could only explore by taking a
much larger sample.

The table has been divided into four quadrants by [p. 143]
marking out central values of the two variates; these
values, 67.5 inches for the fathers and 63.5 inches for the
daughters, are near the means. When the table is so
divided it is obvious that the lower right-hand and upper
left-hand quadrants are distinctly more populous than the
other two; not only are more squares occupied, but the
frequencies are higher. It is apparent that tall men have tall
daughters more frequently than the short men, and vice
versa. The method of correlation aims at measuring the
degree to which this association exists.

The marginal totals show the frequency distributions of
the fathers and the daughters respectively. These are
both approximately normal distributions, as is frequently
the case with biometrical data collected without selection.
This marks a frequent difference between biometrical and
experimental data. An experimenter would perhaps have
bred from two contrasted groups of fathers of, for
example, 63 and 72 inches in height; all his fathers would
then belong to these two classes, and the correlation
coefficient, if used, would be almost meaningless. Such
an experiment would serve to ascertain the regression of
daughter's height in father's height, and so to determine
the effect on the daughters of selection applied to the
fathers, but it would not give us the correlation coefficient



which is a descriptive observational feature of the
population as it is, and may be wholly vitiated by
selection.

Just as normal variation with one variate may be specified
by a frequency formula in which the [p. 144] logarithm of
the frequency is a quadratic function of the variate, so
with two variates the frequency may be expressible in
terms of a quadratic function of the values of the two
variates. We then have a normal correlation surface, for
which the frequency may conveniently be written in the
form

In this expression x and y are the deviations of the two
variates from their means, s1 and s2 are the two standard
deviations, and r is the correlation between x and y. The
correlation in the above expression may be positive or
negative, but cannot exceed unity in magnitude; it is a
pure number without physical dimensions. If r=0, the
expression for the frequency degenerates into the
product of the two factors

showing that the limit of the normal correlation surface,



when the correlation vanishes, is merely that of two
normally distributed variates varying in complete
independence. At the other extreme, when p is +1 or -1,
the variation of the two variates is in strict proportion, so
that the value of either may be calculated accurately from
that of the other. In other words, we cease strictly to have
two variates, but merely two measures of the same
variable quantity.

If we pick out the cases in which one variate has an
assigned value, we have what is termed an array; [p. 145]
the columns and rows of the table may, except as regards
variation within the group limits, be regarded as arrays.
With normal correlation the variation within an array may
be obtained from the general formula, by giving x a
constant value, (say) a, and dividing by the total
frequency with which this value occurs; then we have

showing (i.) that the variation of y within the array is
normal ; (ii.) that the mean value of y for that array is
ras2/s1, so that the regression of y on x is linear, with
regression coefficient



and (iii.) that the variance of y within the array is s2
2(1-r2),

and is the same within each array. We may express this by
saying that of the total variance of y the fraction (1-r2) is
independent of x, while the remaining fraction, r2, is
determined by, or calculable from, the value of x.

These relations are reciprocal, the regression of x on y is
linear, with regression coefficient rs1/s2; the correlation r is
thus the geometric mean of the two regressions. The two
regression lines representing the mean value of x for given
y, and the mean value of y for given x, cannot coincide
unless r=[plus or minus]1. The variation of x within an
array in which y is fixed, is normal with variance equal to
s1

2(1-r2), so that we may say that of the variance of x the
fraction (1-r2) [p. 146] is independent of y, and the
remaining fraction, r2, is determined by, or calculable
from, the value of y.

Such are the formal mathematical consequences of
normal correlation. Much biometric data certainly shows a
general agreement with the features to be expected on
this assumption; though I am not aware that the question
has been subjected to any sufficiently critical enquiry.
Approximate agreement is perhaps all that is needed to
justify the use of the correlation as a quantity descriptive
of the population; its efficacy in this respect is undoubted,
and it is not improbable that in some cases it affords a
complete description of the simultaneous variation of the
variates.



31. The Statistical Estimation of the Correlation

Just as the mean and the standard deviation of a normal
population in one variate may be most satisfactorily
estimated from the first two moments of the observed
distribution, so the only satisfactory estimate of the
correlation, when the variates are normally correlated, is
found from the "product moment." If x and y represent the
deviations of the two variates from their means, we
calculate the three statistics s1, s2, r by the three
equations

ns1
2 = S(x2), ns2

2 = S(y2), nrs1s2 = S(xy);

then s1 and s2 are estimates of the standard deviations s1,
and s2, and r is an estimate of the correlation r. Such an
estimate is called the correlation coefficient, or the
product moment correlation, the latter term [p. 147]
referring to the summation of the product terms, xy, in the
last equation.

The above method of calculation might have been derived
from the consideration that the correlation of the
population is the geometric mean of the two regression
coefficients; for our estimates of these two regressions
would be



so that it is in accordance with these estimates to take as
our estimate of r

which is in fact the product moment correlation.

Ex. 25. Parental correlation in stature. -- The numerical
work required to calculate the correlation coefficient is
shown below in Table 32.

The first eight columns require no explanation, since they
merely repeat the usual process of finding the mean and
standard deviation of the two marginal distributions. It is
not necessary actually to find the mean, by dividing the
total of the third column, 480.5, by 1376, since we may
work all through with the undivided totals. The correction
for the fact that our working mean is not the true mean is
performed by subtracting (480.5)2/1376 in the 4th
column; a similar correction appears at the foot of the 8th

column, and at the foot of the last column. The correction
for the sum of products is performed by subtracting
4805x2605/1376· This correction of [p. 148] [table] [p.
149] the product term may be positive or negative; if the
total deviations of the two variates are of opposite sign,
the correction must be added. The sum of squares, with
and without Sheppard's correction (1376/12), are shown
separately; there is no corresponding correction to be



made to the product term.

The 9th column shows the total deviations of the
daughter's height for each of the 18 columns in which the
table is divided. When the numbers are small, these may
usually be written down by inspection of the table. In the
present case, where the numbers are large, and the
entries are complicated by quartering, more care is
required. The total of column 9 checks with that of the 3rd
column. In order that it shall do so, the central entry +15.5,
Which does not contribute to the products, has to be
included. Each entry in the 9th column is multiplied by the
paternal deviation to give the 10th column. In the present
case all the entries in column 10 are positive; frequently
both positive and negative entries occur, and it is then
convenient to form a separate column for each. A useful



check is afforded by repeating the work of the last two
columns, interchanging the variates; we should then find
the total deviation of the fathers for each array of
daughters, and multiply by the daughters deviation. The
uncorrected totals, 5136.25, should then agree. This
check is especially useful with small tables, in which the
work of the last two columns, carried out rapidly, is liable
to error.

The value of the correlation coefficient, using Sheppard's
correction, is found by dividing 5045.28 [p. 150] by the
geometric mean of 9209.0 and 10,392.5; its value is
+.5157· If Sheppard's correction had not been used, we
should have obtained +.5097. The difference is in this
case not large compared to the errors of random
sampling, and the full effects on the distribution in random
samples of using Sheppard's correction have never been
fully examined, but there can be little doubt that
Sheppard's correction should be used, and that its use
gives generally an improved estimate of the correlation.
On the other hand, the distribution in random samples of
the uncorrected value is simpler and better understood,
so that the uncorrected value should be used in tests of
significance, in which the effect of correction need not, of
course, be overlooked. For simplicity coarse grouping
should be avoided where such tests are intended. The
fact that with small samples the correlation obtained by
the use of Sheppard's correction may exceed unity,
illustrates the disturbance introduced into the random



sampling distribution.

32. Partial Correlations

A great extension of the utility of the idea of correlation
lies in its application to groups of more than two variates.
In such cases, where the correlation between each pair of
three variates is known, it is possible to eliminate any one
of them, and so find what the correlation of the other two
would be in a population selected so that the third variate
was constant.

Ex. 26. Elimination of age in organic correlations [p. 151]
with growing children. -- For example, it was found
(Mumford and Young's data) in a group of boys of
different ages, that the correlation of standing height with
chest girth was +.836. One might expect that part of this
association was due to general growth with age. It would
be more desirable for many purposes to know the
correlation between the variates for boys of a given age;
but in fact only a few of the boys will be exactly of the
same age, and even if we make age groups as broad as a
year, we shall have in each group much fewer than the
total number measured. In order to utilise the whole
material, we only need to know the correlations of
standing height with age, and of chest girth with age.
These are given as .714 and .708.·

The fundamental formula in calculating partial correlation
coefficients may be written



Here the three variates are numbered 1, 2, and 3, and we
wish to find the correlation between 1 and 2, when 3 is
eliminated; this is called the "partial" correlation between
1 and 2, and is designated by r12. 3, to show that variate 3
has been eliminated. The symbols r12, r13, r23, indicate the
correlations found directly between each pair of variates;
these correlations being distinguished as "total"
correlations.

Inserting the numerical values in the above formula we
find r12. 3 =·.668, showing that when age is eliminated the
correlation, though still considerable, [p. 152] has been
markedly reduced. The mean value given by the above-
mentioned authors for the correlations found by grouping
the boys by years, is .653, not a greatly different value. In
a similar manner, two or more variates may be eliminated
in succession; thus with four variates, we may first
eliminate variate 4, by thrice applying the above formula
to find r12. 4, r13. 4, and r23. 4. Then applying the same
formula again, to these three new values, we have

The labour increases rapidly with the number of variates
to be eliminated. To eliminate s variates, the number of



operations involved, each one application of the above
formula is 1/6 s(s+1)(s+2); for values of s from 1 to 6 this
gives 1, 4, 10, 20, 35, 56 operations. Much of this labour
may be saved by using tables of [sqrt]1-r2 such as that
published by J. R. Miner.[1]

The meaning of the correlation coefficient should be
borne clearly in mind. The original aim to measure the
"strength of heredity" by this method was based clearly
on the supposition that the whole class of factors which
tend to make relatives alike, in contrast to the unlikeness
of unrelated persons, may be grouped together as
heredity. That this is so for all practical purposes is, I
believe, admitted, but the correlation does not tell us that
this is so; it merely [p. 153] tells us the degree of
resemblance in the actual population studied, between
father and daughter. It tells us to what extent the height of
the father is relevant information respecting the height of
the daughter, or, otherwise interpreted, it tells us the
relative importance of the factors which act alike upon the
heights of father and daughter, compared to the totality of
factors at work. If we know that B is caused by A, together
with other factors independent of A, and that B has no
influence on A, then the correlation between A and B does
tell us how important, in relation to the other causes at
work, is the influence of A. If we have not such knowledge,
the correlation does not tell us whether A causes B, or B
causes A, or whether both influences are at work,
together with the effects of common causes.



This is true equally of partial correlations. If we know that
a phenomenon A is not itself influential in determining
certain other phenomena B, C, D, ..., but on the contrary is
probably directly influenced by them, then the calculation
of the partial correlations A with B, C, D, ... in each case
eliminating the remaining values, will form a most valuable
analysis of the causation of A. If on the contrary we
choose a group of social phenomena with no antecedent
knowledge of the causation or absence of causation
among them, then the calculation of correlation
coefficients, total or partial, will not advance us a step
towards evaluating the importance of the causes at work.

The correlation between A and B measures, on a [p. 154]
conventional scale, the importance of the factors which
(on a balance of like and unlike action) act alike in both A
and B, as against the remaining factors which affect A and
B independently. If we eliminate a third variate C, we are
removing from the comparison all those factors which
become inoperative when C is fixed. If these are only
those which affect A and B independently, then the
correlation between A and B, whether positive or negative,
will be numerically increased. We shall have eliminated
irrelevant disturbing factors, and obtained, as it were, a
better controlled experiment. We may also require to
eliminate C if these factors act alike, or oppositely on the
two variates correlated; in such a case the variability of C
actually masks the effect we wish to investigate. Thirdly, C
may be one of the chain of events by the mediation of



which A affects B, or vice versa. The extent to which C is
the channel through which the influence passes may be
estimated by eliminating C; as one may demonstrate the
small effect of latent factors in human heredity by finding
the correlation of grandparent and grandchild, eliminating
the intermediate parent. In no case, however, can we
judge whether or not it is profitable to eliminate a certain
variate unless we know, or are willing to assume, a
qualitative scheme of causation. For the purely descriptive
purpose of specifying a population in respect of a number
of variates, either partial or total correlations are effective,
and correlations of either type may be of interest.

As an illustration we may consider in what sense [p. 155]
the coefficient of correlation does measure the "strength
of heredity," assuming that heredity only is concerned in
causing the resemblance between relatives; that is, that
any environmental effects are distributed at haphazard. In
the first place, we may note that if such environmental
effects are increased in magnitude, the correlations would
be reduced ; thus the same population, genetically
speaking, would show higher correlations if reared under
relatively uniform nutritional conditions, than they would if
the nutritional conditions had been very diverse; although
the genetical processes in the two cases were identical.
Secondly, if environmental effects were at all influential
(as in the population studied seems not to be indeed the
case), we should obtain higher correlations from a mixed
population of genetically very diverse strains, than we



should from a more uniform population. Thirdly, although
the influence of father on daughter is in a certain sense
direct, in that the father contributes to the germinal
composition of his daughter, we must not assume that
this fact is necessarily the cause of the whole of the
correlation; for it has been shown that husband and wife
also show considerable resemblance in stature, and
consequently taller fathers tend to have taller daughters
partly because they choose, or are chosen by, taller wives.
For this reason, for example, we should expect to find a
noticeable positive correlation between step-fathers and
step-daughters; also that, when the stature of the wife is
eliminated, the partial correlation between father and
daughter will be found to be lower than the total
correlation. [p. 156] These considerations serve to some
extent to define the sense in which the somewhat vague
phrase, "strength of heredity," must be interpreted, in
speaking of the correlation coefficient. It will readily be
understood that, in less well understood cases, analogous
considerations may be of some importance, and should if
possible be critically considered.

33. Accuracy of the Correlation Coefficient

With large samples, and moderate or small correlations,
the correlation obtained from a sample of n pairs of values
is distributed normally about the true value r, with
variance,



it is therefore usual to attach to an observed value r, a
standard error (1-r2)/[srqt]n-1, or (1-r2)/[sqrt]n. This
procedure is only valid under the restrictions stated
above; with small samples the value of r is often very
different from the true value, r, and the factor 1-r2,
correspondingly in error; in addition the distribution of r is
far from normal, so that tests of significance based on the
above formula are often very deceptive. Since it is with
small samples, less than 100, that the practical research
worker ordinarily wishes to use the correlation coefficient,
we shall give an account of more accurate methods of
handling the results.

In all cases the procedure is alike for total and for partial
correlations. Exact account may be taken of the
differences in the distributions in the two cases, [p. 157]
by deducting unity from the sample number for each
variate eliminated; thus a partial correlation found by
eliminating three variates, and based on data giving 13
values for each variate, is distributed exactly as is a total
correlation based on 10 pairs of values.

34. The Significance of an Observed Correlation

In testing the significance of an observed correlation we
require to calculate the probability that such a correlation



should arise, by random sampling, from an uncorrelated
population. If the probability is low we regard the
correlation as significant. The table of t given at the end of
the preceding chapter (p. 137) may be utilised to make an
exact test. If n' be the number of pairs of observations on
which the correlation is based, and r the correlation
obtained, without using Sheppard's correction, then we
take

and it may be demonstrated that the distribution of t so
calculated, will agree with that given in the table.

It should be observed that this test, as is obviously
necessary, is identical with that given in the last chapter
for testing whether or not the linear regression coefficient
differs significantly from zero.

TABLE V.A (p. 174) allows this test to be applied directly
from the value of r, for samples up to 100 pairs of
observations. Taking the four definite levels [p. 158] of
significance, represented by P =·.10, .05, .02, and .01, the
table shows for each value of n, from 1 to 20, and thence
by larger intervals to 100, the corresponding values of r.

Ex. 27. Significance of a correlation coefficient between



autumn rainfall and wheat crop. -- For the twenty years,
1885-1904, the mean wheat yield of Eastern England was
found to be correlated with the autumn rainfall; the
correlation found was -.629. Is this value significant? We
obtain in succession

For n=18, this shows that P is less than .01, and the
correlation is definitely significant. The same conclusion
may be read off at once from Table V.A entered with n=18.

If we had applied the standard error,

we should have



a much greater value than the true one, very much
exaggerating the significance. In addition, assuming that r
was normally distributed (n = [infinity]), the significance of
the result would between further exaggerated. This
illustration will suffice to show how deceptive, in small
samples, is the use of the standard error of the [p. 159]
correlation coefficient, on the assumption that it will be
normally distributed. Without this assumption the
standard error is without utility. The misleading character
of the formula is increased if n' is substituted for n'-1, as is
often done. Judging from the normal deviate 4.536, we
should suppose that the correlation obtained would be
exceeded in random samples from uncorrelated material
only 6 times in a million trials. Actually it would be
exceeded about 3000 times in a million trials, or with 500
times the frequency supposed.

It is necessary to warn the student emphatically against
the misleading character of the standard error of the
correlation coefficient deduced from a small sample,
because the principal utility of the correlation coefficient
lies in its application to subjects of which little is known,
and upon which the data are relatively scanty. With
extensive material appropriate for biometrical
investigations there is little danger of false conclusions
being drawn, whereas with the comparatively few cases to
which the experimenter must often look for guidance, the
uncritical application of methods standardised in
biometry, must be so frequently misleading as to



endanger the credit of this most valuable weapon of
research. It is not true, as the above example shows, that
valid conclusions cannot be drawn from small samples; if
accurate methods are used in calculating the probability,
we thereby make full allowance for the size of the sample,
and should be influenced in our judgment only by the
value of the-probability indicated. The great increase of
certainty which accrues from increasing data is [p. 160]
reflected in the value of P, if accurate methods are used.

Ex. 28. Significance of a partial correlation coefficient. --
In a group of 32 poor law relief unions, Yule found that the
percentage change from 1881 to 1891 in the percentage
of the population in receipt of relief was correlated with
the corresponding change in the ratio of the numbers
given outdoor relief to the numbers relieved in the
workhouse, when two other variates had been eliminated,
namely, the corresponding changes in the percentage of
the population over 65, and in the population itself.

The correlation found by Yule after eliminating the two
variates was +.457; such a correlation is termed a partial
correlation of the second order. Test its significance.

It has been demonstrated that the distribution in random
samples of partial correlation coefficients may be derived
from that of total correlation coefficients merely by
deducting from the number of the sample, the number of
variates eliminated. Deducting 2 from the 32 unions used,
we have 30 as the effective number of the sample; hence



n=28

Calculating t from r as before, we find

t=2.719,

whence it appears from the table that P lies between .02
and .01. The correlation is therefore significant. This, of
course, as in other cases, is on the assumption [p. 161]
that the variates correlated (but not necessarily those
eliminated) are normally distributed; economic variates
seldom themselves give normal distributions, but the fact
that we are here dealing with rates of change makes the
assumption of normal distribution much more plausible.
The values given in Table V.(A) for n=25, and n=30, give a
sufficient indication of the level of significance attained by
this observation.

35. Transformed Correlations

In addition to testing the significance of a correlation, to
ascertain if there is any substantial evidence of
association at all, it is also frequently required to perform
one or more of the following operations, for each of which
the standard error would be used in the case of a normally
distributed quantity. With correlations derived from large
samples the standard error may, therefore, be so used,
except when the correlation approaches [plus or minus]1;
but with small samples such as frequently occur in
practice, special methods must be applied to obtain
reliable results.



(i.) To test if an observed correlation differs
significantly from a given theoretical value.

(ii.) To test if two observed correlations are
significantly different.

(iii.) If a number of independent estimates of a
correlation are available, to combine them into an
improved estimate.

(iv.) To perform tests (i.) and (ii.) with such average
values. [p. 162]

Problems of these kinds may be solved by a method
analogous to that by which we have solved the problem of
testing the significance of an observed correlation. In that
case we were able from the given value r to calculate a
quantity t which is distributed in a known manner, for
which tables were available. The transformation led
exactly to a distribution which had already been studied.
The transformation which we shall now employ leads
approximately to the normal distribution in which all the
above tests may be carried out without difficulty. Let

z = ½{loge(1+r) - loge(1-r)}

then as r changes from 0 to 1, z will pass from 0 to
[infinity]. For small values of r, z is nearly equal to r, but as
r approaches unity, z increases without limit. For negative
values of r, z is negative. The advantage of this
transformation lies in the distribution of the two quantities



in random samples. The standard deviation of r depends
on the true value of the correlation, r; as is seen from the
formula

Since r is unknown, we have to substitute for it the
observed value r, and this value will not, in small samples,
be a very accurate estimate of r. The standard error of z is
simpler in form,

and is practically independent of the value of the [p. 163]
correlation in the population from which the sample is
drawn.

In the second place the distribution of r is skew in small
samples, and even for large samples it remains very skew
for high correlations. The distribution of z is not strictly
normal, but it tends to normality rapidly as the sample is
increased, whatever may be the value of the correlation.
We shall give examples to test the effect of the departure
of the z distribution from normality.

Finally the distribution of r changes its form rapidly as r is



changed ; consequently no attempt can be made, with
reasonable hope of success, to allow for the skewness of
the distribution. On the contrary, the distribution of z is
nearly constant in form, and the accuracy of tests may be
improved by small corrections for skewness; such
corrections are, however, in any case somewhat laborious,
and we shall not deal with them. The simple assumption
that z is normally distributed will in all ordinary cases be
sufficiently accurate.

These three advantages of the transformation from r to z
may be seen by comparing Figs. 7 and 8. In Fig. 7 are
shown the actual distributions of r, for 8 pairs of
observations, from populations having correlations 0 and
0.8; Fig. 8 shows the corresponding distribution curves for
z. The two curves in Fig. 7 are widely different in their
modal heights; both are distinctly non-normal curves; in
form also they are strongly contrasted, the one being
symmetrical, the other highly unsymmetrical. On the
contrary, in [p. 164] Fig. 8 the two curves do not differ
greatly in height; although not exactly normal in form, they
come so close to it, even for a small sample of 8 pairs of
observations, [p. 165] that the eye cannot detect the
difference; and this approximate normality holds up to the
extreme limits r=[plus or minus]1. One additional feature is
brought out by Fig. 8 ; in the distribution for r=0.8,
although the curve itself is as symmetrical as the eye can
judge of, yet the ordinate of zero error is not centrally
placed. The figure, in fact, reveals the small bias which is



introduced into the estimate of the correlation coefficient
as ordinarily calculated; we shall treat further of this bias
in the next section, and in the following chapter shall deal
with a similar bias introduced in the calculation of
intraclass correlations.



To facilitate the transformation we give in Table V.(B) (p.
175) the values of r corresponding to values of z,



proceeding by intervals of ,01, from 0 to 3. In the earlier
part of this table it will be seen that the values of r and z
do not differ greatly; but with higher correlations small
changes in r correspond to relatively large changes in z. In
fact, measured on the z-scale, a correlation of .99 differs
from a correlation .95 by more than a correlation .6
exceeds zero. The values of z give a truer picture of the
relative importance of correlations of different sizes, than
do the values of r.

To find the value of z corresponding to a given value of r,
say .6, the entries in the table lying on either side of .6, are
first found, whence we see at once that z lies between .69
and .70; the interval between these entries is then divided
proportionately to find the fraction to be added to .69. In
this case we have 20/64, or .31, so that z=.6931. Similarly,
in finding [p. 166] the value of r corresponding to any
value of z, say .9218, we see at once that it lies between
.7259 and .7306; the difference is 47, and 18 per cent of
this gives 8 to be added to the former value, giving us
finally r=.7267. The same table may thus be used to
transform r into z, and to reverse the process.

Ex. 29. Test of the approximate normality of the
distribution of z. -- In order to illustrate the kind of
accuracy obtainable by the use of z, let us take the case
that has already been treated by an exact method in Ex.
26. A correlation of -.629 has been obtained from 20 pairs
of observations ; test its significance.



For r=-.629 we have, using either a table of natural
logarithms, or the special table for z, z=.7398. To divide
this by its standard error is equivalent to multiplying it by
[sqrt]17.· This gives -3.050, which we interpret as a
normal deviate. From the table of normal deviates it
appears that this value will be exceeded about 23 times in
10,000 trials. The true frequency, as we have seen, is
about 30 times in 10,000 trials. The error tends slightly to
exaggerate the significance of the result.

Ex. 30.· Further test of the normality of the distribution of
z. -- A partial correlation +.457 was obtained from a
sample of 32, after eliminating two variates. Does this
differ significantly from zero? Here z =.4935; deducting
the two eliminated variates the effective size of the
sample is 30, and the standard error of z is 1/[sqrt]27;
multiplying z by [sqrt]27, we have as a. normal variate
2.564. Table IV. shows, as before, that P is just over ·.01.
There is a slight exaggeration [p. 167] of significance, but
it is even slighter than in the previous example.

The above examples show that the z transformation will
give a variate which, for most practical purposes, may be
taken to be normally distributed. In the case of simple
tests of significance the use of the table of t is to be
preferred ; in the following examples this method is not
available, and the only method available which is both
tolerably accurate and sufficiently rapid for practical use
lies in the use of z.



Ex. 31· Significance of deviation from expectation of an
observed correlation coefficient. -- In a sample of 25 pairs
of parent and child the correlation was found to be .60. Is
this value consistent with the view that the true
correlation in that character was .46?

The first step is to find the difference of the
corresponding values of z. This is shown below:

To obtain the normal deviate we multiply by [sqrt]22, and
obtain .918. The deviation is less than the standard
deviation, and the value obtained is therefore quite in
accordance with the hypothesis. [p. 168]

Ex. 32. Significance of difference between two observed
correlations. -- Of two samples the first, of 20 pairs, gives
a correlation .6, the second, of 25 pairs, gives a
correlation .8: are these values significantly different?

In this case we require not only the difference of the
values of z, but the standard error of the difference. The
variance of the difference is the sum of the reciprocals of
17 and 22; the work is shown below:



The standard error which is appended to the difference of
the values of z is the square root of the variance found on
the same line. The difference does not exceed twice the
standard error, and cannot therefore be judged significant.
There is thus no sufficient evidence to conclude that the
two samples are not drawn from equally correlated
populations.

Ex. 33· Combination of values from small samples. --
Assuming that the two samples in the last example were
drawn from equally correlated populations, estimate the
value of the correlation.

The two values of z must be given weight inversely
proportional to their variance. We therefore [p. 169]
multiply the first by 17, the second by 22 and add, dividing
the total by 39. This gives an estimated value of z for the
population, and the corresponding value of r may be
found from the table.



The weighted average value of z is .9218, to which
corresponds the value r=.7267; the value of z so obtained
may be regarded as subject to normally distributed errors
of random sampling with variance equal to 1/39· The
accuracy is therefore equivalent to that of a single value
obtained from 42 pairs of observations. Tests of
significance may thus be applied to such averaged values
of z, as to individual values.

36. Systematic Errors

In connexion with the averaging of correlations obtained
from small samples it is worth while to consider the
effects of two classes of systematic errors, which,
although of little or no importance when single values only
are available, become of increasing importance as larger
numbers of samples are averaged.

The value of z obtained from any sample is an estimate of
a true value, r, belonging to the sampled [p. 170]
population, just as the value of r obtained from a sample is
an estimate of a population value, r. If the method of
obtaining the correlation were free from bias, the values of



z would be normally distributed about a mean z[bar],
which would agree in value with z. Actually there is a small
bias which makes the mean value of z somewhat greater
numerically than z; thus the correlation, whether positive
or negative, is slightly exaggerated. This bias may
effectively be corrected by subtracting from the value of z
the correction

For single samples this correction is unimportant, being
small compared to the standard error of z. For example, if
n'=10, the standard error of z is .378, while the correction
is r/l8 and cannot exceed .056. If, however, z[bar] were
the mean of 1000 such values of z, derived from samples
of 10, the standard error of z[bar] is only .012, and the
correction, which is unaltered by taking the mean, may
become of great importance.

The second type of systematic error is that introduced by
neglecting Sheppard's correction. In calculating the value
of z, we must always take the value of r found without
using Sheppard's correction, since the latter complicates
the distribution.

But the omission of Sheppard's correction introduces a
systematic error, in the opposite direction to that
mentioned above; and which, though normally very small,



appears in large as well as in small samples. In case of
averaging the correlations from a number of [p. 171]
coarsely grouped small samples, the average z should be
obtained from values of r found without Sheppard's
correction, and to the result a correction, representing the
average effect of Sheppard's correction, may be applied.

37. Correlation between Series

The extremely useful case in which it is required to find
the correlation between two series of quantities, such as
annual figures, arranged in order at equal intervals of time,
is in reality a case of partial correlation, although it may be
treated more directly by the method of fitting curved
regression lines given in the last chapter (p. 128).

If, for example, we had a record of the number of deaths
from a certain disease for successive years, and wished to
study if this mortality were associated with meteorological
conditions, or the incidence of some other disease, or the
mortality of some other age group, the outstanding
difficulty in the direct application of the correlation
coefficient is that the number of deaths considered
probably exhibits a progressive change during the period
available. Such changes may be due to changes in the
population among which the deaths occur, whether it be
the total population of a district, or that of a particular age
group, or to changes in the sanitary conditions in which
the population lives, or in the skill and availability of
medical assistance, or to changes in the racial or genetic



composition of the population. In any case it is usually
found that the changes are still apparent [p. 172] when
the number of deaths is converted into a death-rate on
the existing population in each year, by which means one
of the direct effects of changing population is eliminated.

If the progressive change could be represented effectively
by a straight line it would be sufficient to consider the
time as a third variate, and to eliminate it by calculating
the corresponding partial correlation coefficient. Usually,
however, the change is not so simple, and would need an
expression involving the square and higher powers of the
time adequately to represent it. The partial correlation
required is one found by eliminating not only t, but t2, t3,
t4, ..., regarding these as separate variates; for if we have
eliminated all of these up to (say) the fourth degree, we
have incidentally eliminated from the correlation any
function of the time of the fourth degree, including that by
which the progressive change is best represented.

This partial correlation may be calculated directly from the
coefficients of the regression function obtained as in the
last chapter (p. 128). If y and y' are the two quantities to
be correlated, we obtain for y the coefficients A, B, C,...,
and for y' the corresponding coefficients A', B', C', .. .; the
sum of the squares of the deviations of the variates from
the curved regression lines are obtained as before, from
the equations



[p. 173]

while the sum of the products may be obtained from the
similar equation

the required partial correlation being, then,

In this process the number of variates eliminated is equal
to the degree of t to which the fitting has been carried; it
will be understood that both variates must be fitted to the
same degree, even if one of them is capable of adequate
representation by a curve of lower degree than is the
other. [p. 174]



[p. 175]



Footnotes

[1] Tables of [sqrt]1-r2 for Use in Partial Correlation, and in
Trigonometry. Johns Hopkins Press, 1922.
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